Lifecycle Impacts of the Financial & Economic Crisis on Household Optimal Consumption, Portfolio Choice, and Labor Supply

© Jingjing Chai, Raimond Maurer, Olivia S. Mitchell, Ralph Rogalla

RRC meeting, August 2011

Financial/Economic Crisis

Unemployment Rate

Percentage of Americans in the workforce and without employment.

Data: Bureau of Labor Statistics

Real GDP

Year-on-Year Growth

Motivation & Research Questions

- Financial crisis (capital market): workers lost substantial portion of their retirement saving.
- Economic crisis (labor market): high unemployment and pay cuts; Social Security and private pension contributions down.

We ask:
- How might people react (optimally) to combination of financial & economic crisis?
- Diff’s by age group?
- Short vs long term consequences?
Literature & Contributions

• Recent LC-portfolio choice studies:
 ✓ Stock returns: i.i.d. normally distributed
 ✓ Labor income: Permanent & transitory shocks i.i.d.
 ✓ Relation: Correlation (Cocco et al. 2005 RFS) Cointegration (Benzoni et al. 2007 JF)

• Empirical models of regime changes:
 ✓ Finance Lit.: Time-varying investment opportunity set: bull/bear market → low/high volatility & high/low mean returns (Guidolin/Timmermann 2008 RFS)
 ✓ Macro Lit: Countercyclical dynamics of labor income risk (Storesletten et al. 2004 JPE)

• Our Contribution
 ✓ Extend LC-portfolio model using joint process for stock/labor market risk with business cycle (Ferri/Greenberg 1990 JEBO)
 ✓ Incorporate endogenous work effort, retirement, & annuitization.

Life Cycle Building Blocks

Utilty of consumption & leisure

\[V_t = \left(\frac{C_t L_t^a}{1 - \rho} \right)^{-\rho} + \beta E_t (p_{t+1} V_{t+1}) \]

Labor market: Wage rate stochastic; econ. state dependent
Capital market: Deferred annuity, bond, econ. state dep. risky stock
Housing: Age dependent (det.) costs
Regulation: US SocSec-rules, tax rates
Household: US female; mid-income; RRA=5; α=1.3

Business Cycle

Numerical dynamic optimization; simulation of 100,000 life cycles

Consumption
Leisure/labor supply
Asset allocation, annuitization
Retirement
Model & Calibration

➢ Business Cycle: NBER classification

• Markov Chain

\[M = \begin{bmatrix} p_{0,0} & p_{1,0} \\ p_{0,1} & p_{1,1} \end{bmatrix} = \begin{bmatrix} 0.68 & 0.32 \\ 0.32 & 0.68 \end{bmatrix} \]

• Regime change for macroeconomy.
Two states: \(s = \text{expansion or contraction} \)

• Annual US GNP growth rate from BEA for 1929-2008

Model & Calibration

Labor market:

➢ Data: PSID panel

\[
\text{Prob(unemployment)} = \begin{cases} p_b & \text{if expansion at date } t \\ p_c & \text{if contraction at date } t \end{cases}, \quad p_b < p_c
\]

\[
WR_t = \begin{cases} \frac{w(t,...)E_u_t}{x^\epsilon} & \text{if employed} \\ x^{\frac{\epsilon}{2}} & \text{if unemployed} \end{cases}, \quad x \in (0,100)
\]

➢ When working: wage rate * hours

\[
E_t = E_{t-1}n_{t-1}
\]

\((S = \text{expansion or contraction})\)

Permanent income shock \(n_{t,x} \sim \log \text{Niid } (0, \sigma_{n,t}^2) \)

\[
\sigma_{n,t} = \begin{cases} \sigma_{n,0} & \text{if expansion at date } t \\ \sigma_{n,1} & \text{if contraction at date } t \end{cases}, \quad \sigma_{N,0} < \sigma_{N,1}
\]

Transitory income shock \(u_t \sim \log \text{Niid } (0, \sigma_u^2) \)

Model & Calibration

- Labor market:
 - Social Security benefits depend on retirement age relative to NRA, & earnings:
 - If retire < NRA: benefit permanently reduced
 - If retire ≥ NRA: benefit permanently increased

- Annuities:
 - Deferred annuity: before NRA, payout at NRA;
 - Immediate annuity: after NRA;
 - Loading factor: 2.38%.

Model & Calibration

- Capital market:
 - Risk-free asset: Bonds 2% p.a.
 - Risky stocks:
 - Data: Annual real value-weighted market index portfolio returns on the NYSE, AMEX, and NASDAQ (retrieved from CRSP) from 1950 to 2008
 - Markov chain -> Business Cycle
 - state 1: \(y_i \sim N(\mu_1 = 6.84\%, \sigma_1 = 11.21\%) \)
 - state 2: \(y_i \sim N(\mu_2 = 2.12\%, \sigma_2 = 20.77\%) \)
 - Transition matrix:
 \[
 \begin{bmatrix}
 0.68 & 0.32 \\
 0.32 & 0.68
 \end{bmatrix}
 \]
How to Define a Crisis?

- **Macro: Financial/Economic**
 - 1st year: -30% downturn in the stock market
 - First 4 years contraction (business cycle)
 - Exogenous into the model (i.e. for all 100,000 simulated LC with optimal feedback controls)

- **Individual crisis:**
 - 2+ years unemployed in first 4 years;
 - Average yearly stock return < age 62 in 1st quintile;
 - Methodology: Select from 100,000 simulated LC-Profiles (with optimal feedback controls).

Results: Work Hours & Retirement Age

<table>
<thead>
<tr>
<th>Age</th>
<th>Normal</th>
<th>Crisis</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>27.4</td>
<td>8.0</td>
</tr>
<tr>
<td>63</td>
<td>6.3</td>
<td>3.5</td>
</tr>
<tr>
<td>64</td>
<td>6.6</td>
<td>5.5</td>
</tr>
<tr>
<td>65</td>
<td>8.2</td>
<td>8.8</td>
</tr>
<tr>
<td>66</td>
<td>24.6</td>
<td>36.3</td>
</tr>
<tr>
<td>67</td>
<td>22.3</td>
<td>32.7</td>
</tr>
<tr>
<td>68</td>
<td>4.7</td>
<td>5.1</td>
</tr>
<tr>
<td>69</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>70</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Avg. Ret. Age

- Age 20: 64.82
- Age 55: 65.80

<table>
<thead>
<tr>
<th>Age</th>
<th>Normal</th>
<th>Crisis</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>20.6</td>
<td>4.4</td>
</tr>
<tr>
<td>63</td>
<td>7.0</td>
<td>3.3</td>
</tr>
<tr>
<td>64</td>
<td>7.0</td>
<td>3.2</td>
</tr>
<tr>
<td>65</td>
<td>9.0</td>
<td>10.2</td>
</tr>
<tr>
<td>66</td>
<td>26.8</td>
<td>38.2</td>
</tr>
<tr>
<td>67</td>
<td>24.4</td>
<td>33.2</td>
</tr>
<tr>
<td>68</td>
<td>5.1</td>
<td>7.5</td>
</tr>
<tr>
<td>69</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>70</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Avg. Ret. Age

- Age 20: 65.08
- Age 55: 66.04
Results: Consumption Loss Crisis vs Normal

- Substantial and persistent for both age groups
 - Young: Large SR consumption loss partly offset by more leisure; smaller LR loss.
 - Older: SR consumption loss smaller despite more work effort; LR consumption loss large

Results: Asset Allocation Crisis vs Normal

- Young: SR: 40% wealth drop (low wage & low hours); less equity; LR wealth recovers somewhat; more equity in second half of life
- Older: SR 20% wealth drop, less equity now, more later
Conclusions

- LC model to explore SR & LR impacts of financial/economic crisis on:
 - Optimal portfolio choice,
 - Consumption and saving,
 - Work hours and retirement.
 - Double-barreled crisis Regime change B-cycle model driving stochastic dynamics of stock & labor market risk.

- Results:
 - Young: Work - early but + later; retire later; consumption drop; hold less (more) equity early (late) in life.
 - Older group: Work + and retire later; consume less; hold - (+) equity early (late); buy less longevity risk insurance.

 → Corresponds to recent evidence on short-term effects.

Thank you!

www.pensionresearchcouncil.org