Transfers, Bequests, and Human Capital Investment in Children Over the Life Cycle

Eric French, Andrew Hood, Cormac O’Dea

University College London, Institute for Fiscal Studies and Yale University

August 3, 2017
What we do

Using UK data we

- Estimate transfers from parents to children over the life cycle
 - Time with children
 - Schooling investments to children
 - Inter-vivos transfers and bequests to children

- Incorporate these transfers into an estimated lifecycle model (similar to Lee and Seshadri 2017)
 - Separate luck from investments in driving income inequality
 - Estimate extent of intergenerational altruism

- Use the model to understand the behavioral and welfare consequences of tax and Social Security reform
What we do

Using UK data we

- Estimate transfers from parents to children over the life cycle
 - Time with children
 - Schooling investments to children
 - Inter-vivos transfers and bequests to children

- Incorporate these transfers into an estimated lifecycle model (similar to Lee and Seshadri 2017)
 - Separate luck from investments in driving income inequality
 - Estimate extent of intergenerational altruism

- Use the model to understand the behavioral and welfare consequences of tax and Social Security reform
What we do

Using UK data we

- Estimate transfers from parents to children over the life cycle
 - Time with children
 - Schooling investments to children
 - Inter-vivos transfers and bequests to children

- Incorporate these transfers into an estimated lifecycle model (similar to Lee and Seshadri 2017)
 - Separate luck from investments in driving income inequality
 - Estimate extent of intergenerational altruism

- Use the model to understand the behavioral and welfare consequences of tax and Social Security reform
Motivation: Intergenerational Altruism

- Intergenerational altruism important for understanding potential benefits of Social Security reform
 - Current generations only willing to accept benefit cuts if they are altruistic towards future generations (Fuster, Imrohoroglu, Imrohoroglu, (ReStud 2007))

- Model allows us to estimate intergenerational altruism using data on multiple parental transfers (time + money transfers)
 - Estimates less sensitive to model misspecification, confounding factors than those based on single outcome (e.g. bequests (De Nardi, French, Jones (JPE 2010; AER 2016)))
Motivation: Intergenerational Altruism

- Intergenerational altruism important for understanding potential benefits of Social Security reform
 - Current generations only willing to accept benefit cuts if they are altruistic towards future generations (Fuster, Imrohoroglu, Imrohoroglu, (ReStud 2007))

- Model allows us to estimate intergenerational altruism using data on multiple parental transfers (time + money transfers)
 - Estimates less sensitive to model misspecification, confounding factors than those based on single outcome (e.g. bequests (De Nardi, French, Jones (JPE 2010; AER 2016)))
UK Data

National Child Development Study (NCDS)

- All individuals born in a particular week of March 1958 - followed up at 7, 11, 16, 23, 33, 42, 50 and 55
- Information on parental background, parental time investments, cognitive ability, school quality, educational outcomes, earnings and inter-vivos transfers
 - Ability measure: test with approx. 30 math, 30 verbal questions.
- Supplement with information on lifetime inheritance receipt for the same cohort from ELSA (UK version of HRS)
UK Data

National Child Development Study (NCDS)

- All individuals born in a particular week of March 1958 - followed up at 7, 11, 16, 23, 33, 42, 50 and 55
- Information on parental background, parental time investments, cognitive ability, school quality, educational outcomes, earnings and inter-vivos transfers
 - Ability measure: test with approx. 30 math, 30 verbal questions.
- Supplement with information on lifetime inheritance receipt for the same cohort from ELSA (UK version of HRS)
UK: High Intergenerational Persistence of Inequality
The ”Up” documentary series

Machin et al. (1997): using our data, intergenerational correlation:
 • income = 0.45
Ability at 7 by father’s education
Ability at 16 by father’s education
Intergenerational correlation in education

Child's education by father's education

<table>
<thead>
<tr>
<th>Child's education</th>
<th>High-school dropout</th>
<th>High-school graduate</th>
<th>Some college</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compulsory</td>
<td>30%</td>
<td>50%</td>
<td>20%</td>
</tr>
<tr>
<td>Post-compulsory</td>
<td>10%</td>
<td>47%</td>
<td>43%</td>
</tr>
<tr>
<td>Some college</td>
<td>2%</td>
<td>32%</td>
<td>66%</td>
</tr>
</tbody>
</table>
Differences in lifetime income by parental education compared to those whose fathers had compulsory schooling

<table>
<thead>
<tr>
<th>Father’s education</th>
<th>Some post-compulsory</th>
<th>Some college</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total difference</td>
<td>£159,000</td>
<td>£291,000</td>
</tr>
<tr>
<td>Explained by...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age-16 ability</td>
<td>£118,000</td>
<td>£195,000</td>
</tr>
<tr>
<td>Explained by...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age-7 ability</td>
<td>£65,000</td>
<td>£115,000</td>
</tr>
<tr>
<td>Evolution of ability 7-11</td>
<td>£52,000</td>
<td>£75,000</td>
</tr>
<tr>
<td>Evolution of ability 11-16</td>
<td>£1,000</td>
<td>£5,000</td>
</tr>
<tr>
<td>Education given age-16 ability</td>
<td>£17,000</td>
<td>£59,000</td>
</tr>
<tr>
<td>Transfers and bequests</td>
<td>£24,000</td>
<td>£37,000</td>
</tr>
</tbody>
</table>

Notes: Men only.
Lifetime income for those with low-educated fathers: £736,000.
Parental time investments at 7 by father’s education

Reading with child

<table>
<thead>
<tr>
<th></th>
<th>Never</th>
<th>Sometimes</th>
<th>Every week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Father reads</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compulsory</td>
<td>30%</td>
<td>36%</td>
<td>34%</td>
</tr>
<tr>
<td>Post-compulsory</td>
<td>20%</td>
<td>35%</td>
<td>45%</td>
</tr>
<tr>
<td>Some college</td>
<td>18%</td>
<td>29%</td>
<td>53%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Never</th>
<th>Sometimes</th>
<th>Every week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mother reads</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compulsory</td>
<td>16%</td>
<td>37%</td>
<td>47%</td>
</tr>
<tr>
<td>Post-compulsory</td>
<td>12%</td>
<td>31%</td>
<td>57%</td>
</tr>
<tr>
<td>Some college</td>
<td>10%</td>
<td>23%</td>
<td>67%</td>
</tr>
</tbody>
</table>
Parental time investments at 7 by father’s education

Teacher's assessment of interest in child’s education

<table>
<thead>
<tr>
<th></th>
<th>Father</th>
<th>Mother</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Little interest</td>
<td>Some interest</td>
</tr>
<tr>
<td>Compulsory</td>
<td>55%</td>
<td>24%</td>
</tr>
<tr>
<td>Post-compulsory</td>
<td>34%</td>
<td>22%</td>
</tr>
<tr>
<td>Some college</td>
<td>20%</td>
<td>15%</td>
</tr>
</tbody>
</table>
Effect of time investments on the ability

<table>
<thead>
<tr>
<th></th>
<th>Norm. age-11 ability</th>
<th>Norm. age-16 ability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norm. age-7 time investments</td>
<td>0.127 (0.008)</td>
<td></td>
</tr>
<tr>
<td>Norm. age-11 time investments</td>
<td>0.0911 (0.007)</td>
<td></td>
</tr>
<tr>
<td>Norm. age-7 ability</td>
<td>0.596 (0.008)</td>
<td></td>
</tr>
<tr>
<td>Norm. age-11 ability</td>
<td>0.770 (0.007)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>9609</td>
<td>7196</td>
</tr>
</tbody>
</table>

Regression includes controls for parental education and family background.
School quality at 16 by father’s education
Effect of ability, school quality on educational attainment

<table>
<thead>
<tr>
<th></th>
<th>Complete HS</th>
<th>Attend college</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalised age-16 ability</td>
<td>0.226</td>
<td>0.224</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>School quality quintile=2</td>
<td>0.022</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>School quality quintile=3</td>
<td>0.028</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>School quality quintile=4</td>
<td>0.046</td>
<td>0.040</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.018)</td>
</tr>
<tr>
<td>School quality quintile=5</td>
<td>0.018</td>
<td>0.070</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.731</td>
<td>0.252</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>N</td>
<td>7803</td>
<td>6070</td>
</tr>
</tbody>
</table>

Linear probability model. Excluded category is bottom quintile of school quality. HS dropouts not included in college regression.
Model: timing of parental investments

Parental investments

Age of child

Outcomes
Model: timing of parental investments

Age of child

Parental investments

Time investments

Outcomes
Model: timing of parental investments

Parental investments

Time investments

Ability evolves

Outcomes

Age of child

0 7 11 16 23
Model: timing of parental investments

Parental investments

Time investments

Money investment in education

Ability evolves

Outcomes
Model: timing of parental investments

Parental investments

Time investments

Money investment in education

Ability evolves

Education realised

Outcomes

Age of child

0 7 11 16 23
Model: timing of parental investments

Parental investments

Time investments

Money investment in education

Ability evolves

Education realised

Matching into couples occurs

Outcomes

Age of child

0 7 11 16 23

Outcomes

Parental investments

Time investments

Money investment in education

Ability evolves

Education realised

Matching into couples occurs

Outcomes
Model: timing of parental investments

Parental investments

- **Time investments**
- **Money investment in education**
- **Inter-vivos transfer**

Outcomes

- **Ability evolves**
- **Education realised**
- **Matching into couples occurs**
Model: timing of parental investments

Parental investments

Time investments
Money investment in education
Inter-vivos transfer

0 7 11 16 23

Ability evolves
Education realised
Matching into couples occurs
Initial earnings realised, adult life begins

Outcomes
Model: timing of parental investments

Child’s choices
Consumption, savings, labour supply

Age of child
0 7 11 16 23
Model: timing of parental investments

Child’s choices
Consumption, savings, labour supply

Age of child
0 7 11 16 23

Age of child’s child
0 7 11 16 23
Model: timing of parental investments

Age of child

0 7 11 16 23

Child’s choices
Consumption, savings, labour supply and investments in children

Parental investments

0 7 11 16 23

Age of child’s child
Model: timing of parental investments

- **Child’s choices**
 - Consumption, savings, labour supply and investments in children
 - Bequests

- **Parental investments**
 - Outcomes
Summary

- We estimate the importance of time investments, educational investments and cash transfers in driving inequalities over the lifecycle
 - Preliminary estimates suggest all channels are quantitatively important
- Goal is to build model to unpick intergenerational links
 - Will allow us to model household responses to counterfactual policies