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Abstract 
 
This paper develops and estimates a closed-form model of Bayesian learning of 

subjective survival beliefs within the framework of Choquet decision theory. Data from 

the Health and Retirement Study (HRS) indicate that, on average, young respondents 

underestimate their true survival probability whereas old respondents overestimate their 

survival probability. Such subjective beliefs violate the rational expectations paradigm 

and are also not in line with the predictions of the rational Bayesian learning paradigm 

which implies convergence of subjective to underlying 'objective' probabilities. Based on 

the assumption of non-additive beliefs, we therefore introduce a model of Bayesian 

learning which combines rational learning with the possibility that the interpretation of 

new information is prone to psychological attitudes. We estimate the parameters of our 

theoretical model by pooling the HRS data. Despite a parsimonious parametrization we 

find that our Choquet model results in a remarkable fit to the average subjective beliefs 

expressed in the data. 

 



1 Introduction

Dynamic economic models are based on the forward looking behavior of economic agents.
In the context of life-cycle models, an individual’s consumption and savings decision de-
pends on her subjective beliefs about future interest rates, wage rates and the likelihood
of dying. According to these models, individuals have beliefs about such variables and
use these beliefs to make decisions today. Until recently, common practice in such studies
was to assume rational expectations implying that the individuals’ beliefs are given as
objective probability distributions. The use of objective distributions is by now put into
question by numerous researchers who suggest to directly measure subjective expecta-
tions and to evaluate the consequences of deviations of subjective expectations from their
objective counterparts. Manski (2004) provides an overview on this literature.

Key for understanding life-cycle consumption and savings decisions, is an understand-
ing of how individuals form survival expectations. The main contribution of the present
paper is the introduction of a closed-form model of Bayesian learning of survival expecta-
tions within the framework of Choquet decision theory Schmeidler (1986, 1989) and Gilboa
(1987). While Choquet decision theory has mainly been developed in order to model the
decision behavior of individuals who commit Ellsberg paradoxes (Ellsberg 1961), our ap-
proach demonstrates the usefulness of Choquet decision theory in describing the learning
behavior of a representative agent with respect to her subjective survival beliefs. As our
point of departure, we present stylized facts on a comparison between average subjective
survival expectations from the HRS and their objective counterparts that can be sum-
marized as follows: First, on average, individuals of relatively young age underestimate
survival probabilities whereby “young” refers to age bands from about 50 to 70 in our
data. Second, this “pessimistic” bias monotonically decreases with age to zero for re-
spondents of about age 70. Third, old respondents, that is, individuals of about age 70
and older, overestimate their actual survival probability. Fourth, this “optimistic” bias
monotonically increases with age. Finally, the initial pessimistic bias is slightly higher for
women and the final optimistic bias is slightly higher for men.1

As we argue in this paper, these stylized facts are incompatible with the rational
expectations paradigm. Furthermore, the observed age-dependent biases in the data also
suggest a violation of the rational Bayesian learning paradigm. Models of subjective
belief formation based on rational Bayesian learning generate posterior beliefs that are
closer to the true, i.e., objective, distribution the more experienced the agent becomes. If
an agent gains more experience by getting older, rational Bayesian learning requires the
agent to learn with increasing age the true probabilities, cf. Viscusi (1990, 1991). Under

1Our findings thus confirm similar results documented in a literature initiated by Hammermesh (1985).
In two different data samples from surveys, Hammermesh (1985) found that people do incorporate im-
provements of life-expectancy into their beliefs about personal longevity and that the subjective survival
curves are somewhat flatter than the objective data. Similar differences between subjective beliefs and
the objective data have been reported for the HRS by Hurd and Kathleen (1995) and Gan, Hurd, and
McFadden (2003) and others and, more recently, for the Survey of Health, Ageing and Retirement in
Europe (SHARE) data (Hurd, Rohwedder, and Winter 2005).
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the assumption of rational Bayesian learning any gap between subjective beliefs and
objective survival probabilities should therefore decrease with increasing age, implying
that the average beliefs of people are closer to the true probabilities when they get older.

To match the key stylized facts in the data – in particular, pessimism at young and
optimism at old age – we develop a Bayesian learning model of survival beliefs that differs
from the existing literature on subjective expectations in two important respects. First,
we allow for the possibility that people report subjective beliefs that express ambiguity
attitudes. We formally describe such ambiguous beliefs as non-additive probability mea-
sures, i.e., capacities, which arise in Choquet decision theory. More specifically, we use
so-called neo-additive capacities, as introduced by Chateauneuf, Eichberger, and Grant
(2007), according to which a Choquet decision maker resolves her ambiguity by focussing
on the best, resp. worst, possible consequence of her action. Second, as a generalization
of the standard assumption of rational Bayesian learning, we consider a model of psycho-
logically biased Bayesian learning in which neo-additive beliefs are updated in accordance
with the generalized Bayesian update rule (Eichberger, Grant, and Kelsey 2006). For
the representative agent of our model an initial bias between her subjective beliefs and
objective probabilities does not necessarily vanish in the long run. Several studies in the
psychological literature show that real-life agents systematically violate the assumption
of rational Bayesian learning in that their learning behavior is prone to effects such as
“myside bias” or “irrational belief persistence” cf. Baron (2007, Ch. 9) and the references
cited there. The stylized facts in our data on subjective survival beliefs may reflect such
attitudes and our formal approach accommodates these.

Our theoretical framework provides a parsimonious specification of the representative
agent’s age-belief pattern with three parameters, reflecting, first, an initial bias in sub-
jective survival probabilities, second, a measure for the agent’s ambiguity with respect
to her initial estimator of her subjective survival probability, and, third, the degree of
optimism, respectively pessimism, by which the agent resolves her ambiguity. We then
estimate the parameters of our Choquet model by pooling the HRS data. Despite the
low parametrization, our model results in a decent fit to the average data on subjective
beliefs. We also find that the model’s performance is somewhat better for female than
for male respondents.

Our approach is related to a literature initiated by Viscusi (1985) who analyzes changes
in risk perceptions by a simple model of rational Bayesian learning. In the context of the
HRS data on subjective survival probabilities this approach has been used by Smith, Tay-
lor, and Sloan (2001) and Smith, Taylor, Sloan, Johnson, and Desvouges (2001) who test
how new information about health shocks between two interview waves affects updating of
individuals in the HRS.2 In contrast to this literature our approach is more general in that
it allows for the possibility that individuals are not rational Bayesian learners. Moreover,
while we do not investigate how certain idiosyncratic shocks, e.g., general versus smoking

2Under the assumption that all individuals are rational Bayesian learners, Smith, Taylor, Sloan,
Johnson, and Desvouges (2001) show that a representative smoker updates her beliefs in a different
way than a representative non-smokers when she learns about “general” compared to “smoking-related”
health shocks.
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related health shocks or parental death, affect updating of individuals and how updating
differs across a variety of subgroups in the population, the strength of our parsimonious
setup is that it can be directly mapped into calibrated micro- or macroeconomic life-cycle
models with representative agents.

The remainder of our analysis is structured as follows. Section 2 documents the stylized
facts in the HRS data. Section 3 presents our decision theoretic framework resulting in
a parsimonious model of subjective life expectancy. We then present the main results of
our empirical analysis in section 4. Section 5 provides a discussion of our results. Finally,
section 6 concludes. Furthermore, appendix A provides additional analytical results and
appendix B contains a detailed description of our data.

2 Stylized Facts

We compare subjective survival beliefs, based on the data of the Health and Retirement
Study (HRS), with objective survival rates. In our data on subjective beliefs we have
information about individuals’ expectations to live from the age at interview j up to
some target age m. Age at interview j and target age m are assigned according to the
pattern in table 1. Our objective survival rates are based on cohort life tables for the
U.S. population. A detailed description of our data sources and methods is provided in
appendix B. The following section only provides a brief summary.

Table 1: Interview and Target Age

Age at Interview j Target Age m
≤69 80
70-74 85
75-79 90
80-84 95
85-89 100

Source: RAND HRS Data Documentation, Version F (October 2006).

2.1 The Data

In the HRS, respondents of waves 5 through 7 were asked in the respective interview
years 2000, 2002 and 2004 about their probability to live from interview age j until a
certain target age m, cf. table 1. In our analysis, we pool the information in these three
waves. As we discuss in appendix B.1, we do not consider households of age 40 − 49
and of age 90 and older. In addition we exclude some observations with inconsistent
answering patterns. This selection by age and consistency of answering patterns leaves
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us with a total sample size of 44671 observations out of which 18341 are male and 26330
are female respondents. We refer to this sample as our “full sample”. While most of our
analysis focusses on this full sample, we further investigate the sensitivity of our results
with respect to focal point answers at subjective survival probabilities of 0, 50, and 100
percent in subsection 4.3.

As we compare the subjective survival probabilities to their objective counterparts, we
next have to construct objective survival rates. In correspondence with our representative
agent model that we develop in section 3, we follow the literature initiated by Hammer-
mesh (1985) and use cohort life tables for the entire U.S. population as the objective data.
To construct those we predict future survival rates in the population. Our estimates are
based on data for age-specific survival rates for the years 1900 to 2004 taken from the
Human Mortality Database (2008) (HMD) and the Social Security Administration (SSA).
Since projections from official sources tend to underestimate future increases in survival
probabilities, we do not use SSA cohort life tables but rather base the prediction of fu-
ture survival rates on a Lee-Carter procedure (Lee and Carter 1992). The idea of our
approach is that agents in our model base their predictions of their respective objective
survival probabilities on past data but it is unobserved to the econometrician which point
estimates they use. For this reason we account for the uncertainty of the objective data
in the estimation of standard errors, cf. section 4. As an additional advantage, our proce-
dure assigns the objective information on survival rates in correspondence with the HRS
interview years.

2.2 Illustration

Figure 1 summarizes the information in our data by displaying the average subjective
beliefs on survival of HRS respondents against the age at interview and the respective
objective data for men in panel (a) and women in panel (b). The different line segments
are due to changes in target ages, cf. table 1. Two stylized facts emerge for either gender
from the data. First, the subjective beliefs on survival are downward biased at younger
ages. Second, the subjective beliefs on survival are upward biased at older ages whereby
the upward bias increases with age. These stylized facts clearly indicate a systematic
violation of the rational expectations paradigm of economic theory by which there should
be no difference between subjective beliefs and objective survival rates.

For younger respondents (≤ 69) the data in figure 1 is compatible with the convergence
behavior as predicted by rational Bayesian learning.3 However, upon inspection of the
age-belief pattern of elderly respondents of age 75 and older in figure 1, the picture
changes. In figure 2 we zoom in from figure 1 the average beliefs of male respondents
between interview ages 80 to 89 to survive until 95, respectively until 100, against their
objective counterparts in panel (a). To illustrate learning behavior in this age group
we estimated simple linear trends for both the subjective and the objective data and
display the differences in these trends in panel (b) of the same figure. These graphs

3For women we do not observe such a clear convergent pattern even for this age group.
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Figure 1: Subjective and objective survival probabilities

(a) Men
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Source: Own calculations based on HRS, HMD and SSA data.
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indicate divergence with increasing age. This divergent pattern is stronger for the higher
interview/target age group. Thus, contrary to the predictions of the rational Bayesian
learning model the average bias between subjective beliefs and objective probabilities
increases rather than decreases with more experience whereby this effect appears to be
stronger for higher target ages.

The patterns shown in figure 2 illustrate a violation of the rational Bayesian learning
paradigm within target age groups. Furthermore, notice that, in order to explain the data
across target age groups, the rational Bayesian learning hypothesis would require highly
implausible prior beliefs. For example, the overestimation of the subjective belief of an
80 year old agent to live until 95 by 17.28 percentage points for men (8.54 percentage
points for women), cf. figure 1, can only be explained with rational Baysian learning
if the same agent expressed a prior belief with a much higher degree of overestimation
about her survival at the age of 50. However, at the age of 50, we actually observe
an average underestimation of the survival belief by −13.70 percentage points for men
(−15.07 percentage points for women).

Our model of Bayesian learning with psychological bias captures the stylized facts of
figure 1 in a very parsimonious way whereby it also offers a plausible explanation why
young people are too pessimistic whereas elderly people are too optimistic about their
survival expectations. While rational Bayesian learning may be appropriate in situations
in which individuals are emotionally detached from the arrival of new information (think,
e.g., about tossing a coin in order to learning the odds whether it ends up heads or tails),
this may not be the case if new information has a strong personal impact on the individual.
In such situations the individual’s learning process may be prone to emotions such as hope
or despair. This holds in particular true when an individual learns new information about
its life expectancy thereby facing the prospect of its own death.4 We feel that the most
plausible explanation for the overly optimistic life expectations of elderly people is an
optimistic “myside bias” in their interpretation of new information which assists them
to better ignore the increasingly relevant prospect of death. In contrast, younger people
are less biased because the prospect of their death is less relevant yet and they may even
underestimate increases in life expectancy due to medical progress.

3 A Parsimonious Model of Subjective Life Expectancy

3.1 Ambiguous Beliefs

We assume that individuals exhibit ambiguity attitudes in the sense of Schmeidler (1989)
and who may thus, for example, commit paradoxes of the Ellsberg type (Ellsberg 1961).
Following Schmeidler (1989), such individuals could be described as Choquet Expected
Utility (CEU) decision makers, that is, they maximize expected utility with respect to

4Along this line, Kastenbaum (2000) summarizes the insights of psychological research on the reflection
about personal death as follows: “There are divergent theories and somewhat discordant findings, but
general agreement that most of us prefer to minimize even our cognitive encounters with death.”
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Figure 2: Survival probabilities at age 80 and older for men

(a) Objective and subjective probabilities
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non-additive beliefs.5 Our own approach focuses on non-additive beliefs that are defined
as neo-additive capacities in the sense of Chateauneuf, Eichberger, and Grant (2007).

Definition 1. For a given measurable space (Ω, E) the neo-additive capacity, ν, is defined,
for some δ, λ ∈ [0, 1] by

ν (A) = δ · (λ · ωo (A) + (1− λ) · ωp (A)) + (1− δ) · µ (A) (1)

for all A ∈ E whereby µ(π) is some additive probability measure and we have for the
non-additive capacities ωo

ωo (A) = 1 if A = ∅
ωo (A) = 0 if A = ∅

and ωp respectively

ωp (A) = 0 if A = Ω

ωp (A) = 1 if A = Ω.

For a real-valued Savage act f with closed and bounded range, it can be shown that
the Choquet expected utility of f with respect to a neo-additive capacity ν is given as

E (u (f) , dν) = δ · (λ ·max u (f (·)) + (1− λ) ·min u (f (·))) (2)

+ (1− δ) · E (u (f) , dµ) ,

where u : X → R is a von Neumann-Morgenstern utility function and E (u (·) , dν) is
the Choquet expected value of u (·) with respect to ν, cf. Schmeidler (1986). Neo-
additive capacities can be interpreted as non-additive beliefs that represent deviations
from additive beliefs whereby a parameter δ (degree of ambiguity) measures the lack of
confidence the decision maker has in some subjective additive probability distribution
µ. Obviously, if there is no ambiguity, i.e., δ = 0, equation (2) reduces to the standard
subjective expected utility representation E (u (f) , dµ) of Savage (1954). In case there is
some ambiguity, however, the second parameter λ measures how much weight the decision
maker puts on the best possible outcome of alternative f when resolving her ambiguity.
Conversely, (1− λ) is the weight she puts on the worst possible outcome of f . As a
consequence, we interpret λ as an “optimism under ambiguity” parameter.

In the context of survival expectations, we are interested in the agent’s belief to be
alive at some target age m. Let us misuse notation and also write m for the event that

6

6

5Properties of non-additive beliefs are used in the literature for formal definitions of, e.g., ambiguity
and uncertainty attitudes (Schmeidler 1989; Epstein 1999; Ghirardato and Marinacci 2002), pessimism
and optimism (Eichberger and Kelsey 1999; Wakker 2001; Chateauneuf, Eichberger, and Grant 2007),
as well as sensitivity to changes in likelihood (Wakker 2004).
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the agent is still alive at age m. Under the assumption that there is always the possibility
to reach age m, the event m cannot be the null event, implying ωo (m) = 1. On the other
hand, we also stipulate that there is always the possibility to die before reaching age m
so that m cannot be the universal event either, implying ωp (m) = 0. As a consequence,
the agent’s belief to survive until age m in (1) simplifies to

ν (m) = δ · λ + (1− δ) · µ (m) . (3)

According to our interpretation, the additive probability µ (·) in (3) stands in for the
agent’s “rational” part of her survival beliefs. Under the rational expectations paradigm
the subjective additive probability measure µ must, first, coincide with the “true” prob-
ability distribution and, second, the agent must not be ambiguous about her subjective
belief, i.e., δ = 0. However, we do not only assume that the representative agent is am-
biguous about her subjective belief, δ = 0, but also that the subjective probability µ may
deviate from its objective counterpart.

3.2 The Benchmark Case: Rational Bayesian Learning

Consider the situation of an agent who is uncertain about the probability that individuals
of age j survive until age m. We assume that the agent receives information which is
equivalent to a statistical experiment in which n individuals of age j are independently
drawn so that the agent observes for every individual whether it survives until m or not.

Formally, we consider the state space

Ω = [0, 1]× S∞

with S∞ = ×∞i=0 {m, m̄} where m and m̄ are possible outcomes in each trial (m̄ is death
before age m). As event space we define E = B × S∞ whereby B denotes the Borel
σ-algebra of the unit-interval [0, 1] and S∞ denotes the powerset of S∞, i.e., S∞ = 2S∞ .
Let π ∈ E denote the event that πj,m ∈ [0, 1] is the probability of outcome m. In
our framework πj,m is the parameter of a Binomial-distribution that stands in for the
objective probability of survival from j to m, i.e., the probability that outcome m occurs.
For notational convenience, we will drop in this and the subsequent subsection subscripts
and simply write π instead of π k

j,m. Similarly, let In ∈ E denote the event that outcome
m has occurred k-times in the first n trials. More specifically, we assume that Ik

n ∈ Fn

for n ≥ 0, whereby Fn is defined as the σ-algebra generated by the collection of so-called
n-rectangle sets

[0, 1]× A1 × ...× An × S∞ ∈ E
where Ai ∈ 2{m,m̄} for i = 0, ..., n. Obviously, F0 ⊆ F1 ⊆ ... ⊆ F so that the (∞ Fn)n

k
≥0

constitute a filtration, which – together with the fact that In ∈ Fn but Ik
n ∈/ Fn−1 –

formally captures the idea that the agent receives more information with increasing sample
size n.

Let us now suppose that the agent has a subjective additive probability measure, µj,m,
defined on the probability space (Ω, ) whereby, for instance, µj,m π Ik denotes the

6

E ( ∩ n

)
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agent’s subjective (joint) probability that the “true” probability of survival from j to m
is π and that she will observe information Ik

n. Again, we drop the subscripts and write µ
instead of µj,m. While the true value, say π∗, of parameter π is not known to the agent,
we further assume that the agent’s prior over the random variable π is given as a Beta
distribution so that her estimator for the true probability of m, i.e., π∗, is the expected
value of this Beta-distribution, i.e., E [π, dµ] = α for given distribution parameters

α+β

α, β > 0. That is, the prior distribution over π is characterized by the probability density6

{
Kα,βπα−1 (1 π

(π) =
− )β−1 for 0 ≤ π ≤ 1

µ
0 else

where Kα,β is a normalizing constant.7 Since the probability of receiving information Ik
n

for a given π (=likelihood function) is, by the Binomial-assumption,

n
µ Ik

n | π =

(
k

)
πk (1− π)n−k ,

we obtain by Bayes’ rule

( )

µ
( k

π | Ik
) µ

=

(
π ∩ In

n µ (Ik
n)

)

µ Ik )
= ∫ n | π µ (π

µ (
[0,1]

(

Ik
n | π

)

) µ (π) dπ

= K πα+k 1
α+k,β+n k

− (1− π)β+n−k−1 .−

Observe that the agent’s subjective posterior distribution over π is a Beta-distribution
with parameters α + k, β +n− k. Accordingly, the agent’s posterior belief is given by the
expected value of the posterior distribution, E π, dµ · | Ik α+k

n = , which, using that
α+β+n

the prior belief is E [π, dµ] = α , we can rewrite
α+β

[
as

( )]

E
[ α + β n k
π, dµ

(· | Ik
n

)]
=

( )
E [π, dµ] +

α + β + n

(
α + β + n

)
(4)

n

where k is the sample mean. That is, the agent’s posterior belief about the probability
n

of m is a weighted average of her prior and the sample mean whereby the weight at-
tached to the sample mean increases in the number of trials.8 Since, for every c > 0,

6For the ease of exposition we somewhat abuse notation in that we write µ interchangeably for an
additive probability measure, which is a set function, and for a density function, which is defined on the
real line.

7In particular, Kα,β = Γ(α+β)
∞

Γ(α)Γ(β) where Γ (y) = xy−1e−xdx for y > 0.
0

8Tonks (1983) introduces a similar model of

∫

rational Bayesian learning in which the agent has a
normally distributed prior over the mean of some normal distribution and receives normally distributed
information.
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limn prob
(∣∣ k − π∗

∣∣ ≤ c
)

= 1 we obtain the following result for this standard model of→∞ n

rational Bayesian learning.

Observation 1. Under rational Bayesian learning the agent’s estimator E π, dµ · | Ik
n

converges in probability to the true probability π∗ that individuals of age j wil

[
l survive

n

(
until

age m if the number of trials, , approaches infinity.

)]

3.3 Bayesian Learning with Psychological Bias

In this subsection we develop our concept of Bayesian learning with a psychological bias
as a generalization of the rational learning model discussed above. In our model the
representative agent receives new information about her life-expectancy when she gets
older.

Consider now the case in which the agent is a Choquet decision maker so that her prior
beliefs about π are given by a neo-additive capacity (3) whose additive part is described
by a Beta-distribution µ. Her (prior) estimator is now the Choquet expected value of
π ∈ [0, 1] with respect to the non-additive prior ν

α
E [π, dν] = δ · (λ ·max π + (1− λ) ·min π) + (1− δ) ·

α + β

= δ · λ + (1− δ) · E [π, dµ] .

Under the assumption that the agent updates (3) in the light of new information Ik
n, her

posterior beliefs are given by the conditional non-additive probability measure ν · | Ik
n

so that the (posterior) estimator of π becomes E π, dν · | Ik
n .

At this point we have to take a stand on how an agent updates her ambiguous b

(

eliefs.

)

Several different Bayesian update rules are perceiv

[

able

(

for

)]

the non-additive beliefs of
CEU decision-makers (Gilboa and Schmeidler 1993; Sarin and Wakker 1998; Pires 2002;
Eichberger, Grant, and Kelsey 2006; Siniscalchi 2001; Siniscalchi 2006). In this paper we
consider the so-called generalized Bayesian( up) date rule for which we derive in appendix
A.1 the neo-additive posterior belief ν · | Ik

n . Applied to survival beliefs we then obtain
the following neo-additive (posterior) estimator that the agent of age j will be alive at
age m given her information k

E
[
π, dν

(
In

· | Ik
n

)]
= δIk

n
· λ +

(
1− δ k

Ik
n

where

) · E [
π, dµ

(· | In

δ

)]

δIk
n

= .
δ + (1− δ) · µ (Ik

n)

Furthermore, we show in appendix A.2 that the unconditional probability of receiving
information Ik

n is given by

µ
( k

Ik n
n

) µ
=

(
I | π)

µ (π)

µ (π | Ik
n)

n (α + k − 1) · ... · α · (β + n− k 1)
=

− · ... · β
.

k (α + β + n 1) ... (α + β)

( )
− · ·
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In a final step, we link the information received by the agent to her age. We sup-
pose that an agent of age h receives information Ik

n(h) which is equivalent to information

gained from a statistical experiment with n (h) trials whereby the experience function
n (h) satisfies n (0) = 0, n (h) < n (h + 1) for all h and n (h) → ∞ if h → ∞. That is,
our approach associates a higher age with greater experience whereby we do not restrict
the gaining of experience by any upper bound. The following proposition summarizes the
considerations from above.

Proposition 1. Under the assumption of Bayesian learning with psychological bias, the
posterior belief of an agent of age h to survive from age j to age m conditional on the
information Ik

n(h) is given by

E
[
π, dν

(· | Ik
n(h)

)]
= δ k

Ik δ
n

· λ + 1 n(h)
− Ik (n(h)

· E π, dµ · | I h)

whereby

( ) [ ( )]

δ
δIk =

n(h)
δ + (1− δ) · µ

(
Ik
n(h)

with

)

(
k

) (
n (h) (α + k 1) ... α (β + n (h) k 1) ... β

µ In(h) =
k

) − · · · − − · ·
(5)

(α + β + n (h)− 1) · ... · (α + β)

and

E
[
π, dµ

(· | Ik
n(h)

)]
=

(
α + β n (h) k

E [π, dµ] +
α + β + n (h)

) (
α + β + n (h)

)
n (h)

where E [π, dµ] is the agent’s prior additive estimator of the conditional survival probability
and k stands for the observed sample mean of individuals who have survived from age

n(h)

j to age m.

3.4 A Parsimonious Model

We now develop a highly simplified version of our model of Bayesian learning with psy-
chological bias that we bring to the data on survival beliefs in section 4. To this end, we
make the following assumptions:

Assumption 1. The representative agent has a uniform prior distribution over the pa-
rameter π. That is, α = β = 1, implying for (5)

(
k

) (
n (h)

)
k! (n (h)

µ In(h) =
− k)!

k (n (h) + 1) · n (h)!
1

= . (6)
n (h) + 1
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Under assumption 1 the impact of the received information on the ambiguity part is
independent of the observed k and depends only on the number of observations n (h).

Assumption 2. We suppose that the representative agent observes at every age sample
means that actually coincide with the objective survival rates, i.e., for all h, k coincides

n(h)

with the true survival probability πj,m
∗ to live from age j to m, whereby we re-introduce the

subscript notation that had been dropped in the previous two subsections.

Assumption 2 is, by the law of large numbers, appealing for a large number of obser-
vations, cf. observation 1.

Assumption 3. We restrict ourselves to an experience function n (h) = h whereby we
assume that agents start learning at the age of 20 which corresponds to h = 1 in our
model.

The normalization of the initial age in assumption 3 corresponds with many life-cycle
models of consumption and savings where agents are assumed to become economically
active at the age of 20. In section 4.3 we investigate the sensitivity of our estimation
results with respect to the initial age. There, we also address the sensitivity of our results
with respect to the restriction of the experience function imposed by assumption 3.9

Assumption 4. We initialize E [πr,r+1, µ] for all ages r = j, . . . , m− 1 as

E [πr,r+1, dµ] = φπr
∗
,r+1. (7)

∏ Assumption 4 implies that the belief E [πj,m, dµ] for all pairs (j, m) is given by E [πj,m, dµ] =
m−1 m j
r=j φπr

∗
,r+1 = φ − πj

∗
,m.

Using assumptions 1 through 4 in proposition 1 we can summarize our parameterized
Choquet model of subjective life expectancy as follows:

Proposition 2. Let h ≤ j < m. The posterior belief of an agent of age h to survive from
age j to age m is

E [πj,m, dν (· | h)] = δh · λ + (1− δh) · E [πj,m, dµ (· | h)] (8)

whereby
δ

δh =
δ + (1− δ) 1 (9)

1+h

and

E [πj,m, dµ (· | h)] =

(
2

)
h

E [πj,m, dµ] + π∗

(2 + h

(
2 + h

)
j,m

2φm−j + h
= (10)

2 h

)
πj
∗
,m.

+

9We experimented with a more general specification of the experience function as n(h) = ψh, for some
ψ ≥ 1. However, parameters of our model were then only weakly identified.
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Consequently, our simplified version of Bayesian learning with psychological bias re-
sults in a parsimonious specification of the representative agent’s age-belief pattern with
a vector of three parameters, Ψ = [φ, δ, λ], only. These parameters reflect (i) an initial
bias in the additive estimator reflecting overestimation, i.e., φ > 1, or underestimation,
i.e., φ < 1, (ii) a measure for ambiguity, δ, and (iii) the degree of optimism, respectively
pessimism, by which the agent resolves her ambiguity, λ.

If there is no ambiguity in the agent’s beliefs, i.e., δ = 0, our model reduces to a version
of rational Bayesian learning by which the agent’s subjective belief E [πj,m, dν (· | h)]
converges to the objective probability πj

∗
,m when her actual age h – and thereby the

amount of gathered information – increases. Depending on an initial overestimation
(φ > 1), resp. underestimation (φ < 1), the subjective beliefs thereby monotonically
converge from “above”, resp. “below”, whereby this convergence behavior is the same
for all target ages. As already discussed in the introduction, such a model of rational
Bayesian learning can obviously not accommodate the stylized facts of figure 1, showing
strong underestimation for a lower target age, e.g., m = 80, and strong overestimation
for a higher target age, e.g., m = 95. In order to accommodate these stylized facts by
rational Bayesian learning alone, an according model would require target-age specific
parameters φm such that, e.g., φ85 < 1 and φ95 > 1. Such an extension would come
at the cost of loosing parsimony without offering a straightforward interpretation of the
additional parameters. In our opinion, it is therefore highly implausible that the HRS
data may reflect rational Bayesian learning alone.

If, in contrast, there is some ambiguity involved, i.e., δ > 0, our model implies that the
impact of the additive part on the overall belief will decrease with increasing age under
our assumption that the agents receive more information with increasing age. Observe
that, for a given δ, δh is strictly decreasing in h whereby limh δ→∞ h = 1. That is, the
older the agent gets, i.e., the more information she receives, the more is her survival belief
determined by her optimistic/pessimistic attitude towards the resolution of ambiguity
as expressed by parameter λ. In the context of survival expectations this convergence
feature of our learning model allows us to formally express the idea that individuals
minimize their “cognitive encounters with death” (Kastenbaum 2000) and suppress the
notion of death the more relevant the risk of dying becomes, i.e., the older they are. The
introduction of ambiguity thus results, in our closed-form learning model, in limit beliefs
that converge, in general, not to the “objective” relative frequency π∗ but rather enforce
the agents’ attitudes towards optimism/pessimism.

4 Empirical Analysis

4.1 Estimation Strategy

By proposition 2 we have to estimate three parameters, Ψ = [φ, δ, λ]. To estimate these
parameters we pool a sample of the HRS data formed of the HRS waves {2000, 2002, 2004}.

15



Except for heterogeneity in sex and age, we ignore all other heterogeneity across individ-
uals. We deliberately choose this strategy in order to focus the analysis on the main
message of this paper: Choquet Bayesian learning is a more appropriate model for sur-
vival belief formation than rational Bayesian learning.10 For notational convenience, we
again do not display an index for sex.

In each interview age group j we have Nj observations denoted as i ∈ {1, . . . , Nj}
where Nj differs across groups. In our estimation we weigh observations by the inverse of
the group sizes, 1 , so that we down-weigh age groups with many observations relative

Nj

to age groups with few observations and vice versa.11 We assume a linearly additive error
term and determine the parameter values by solving the following non-linear minimization
problem

J
1

j

min
∑ 1 ∑N ( 2

ˆE [πj,m, dνi (· | h)]− E [πj,m, dν (
Ψ 2 Njj=1 =1

· | h)]
i

)
. (11)

Here, E [πj,m, dνi (· | h)] denotes individual i’s conditional subjective belief to survive
ˆfrom interview age j to target age m in the HRS data. E [πj,m, dν (· | h)] is the predicted

subjective belief according to our model as described in proposition 2. Recall that target
ages are assigned to interview ages according to the pattern in table 1.

We solve the above non-linear programming problem using a non-linear optimizer. As
unique convergence is not guaranteed for such problems, we tried various combinations
of starting values, Ψ0, and alternative optimization routines for all of our scenarios that
follow. For all these combinations the numerical routines returned the same solution

ˆvector Ψ. We are therefore confident that the solvers converge to the unique global
minimum. We bootstrap standard errors by drawing with replacement from our data
on subjective beliefs and from our predicted data on objective survival probabilities, cf.
appendix B.2, in 500 bootstrap iterations.

4.2 Main Results

Our main estimation results are summarized in table 2. For each estimated parameter, the
ˆtable contains sex specific information on the point estimates, Ψ, the respective standard

errors, σ̂(Ψ), and the 95% confidence intervals of the coefficient estimates, CI(ψ). In
order to document the fraction of the overall variation of survival probabilities
data that is explained by the respective parsimonious model we also report the

̂
in the

R2 of the

10In particular, it is not the purpose of this paper to analyze how updating of beliefs differs across
particular idiosyncratic health shocks or other events that are regarded as relevant for survival belief
formation in the literature, such as parental death. As we further discuss in our concluding remarks in
Section 5, a more in depth analysis of survival belief formation based on idiosyncratic events using our
framework is left for future research.

11Observe that this weighting scheme implies that our point estimates are identical to a regression
based on the average survival rates in each group. Parameter estimates from an un-weighted regression
are similar and are available upon request.
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¯regressions. In addition, we report an “average R2”, denoted as R2, as a measure of the
fraction of the variation in average survival probabilities explained by our model.

Table 2: Parameter estimates

Men Women

Ψ̂ σ̂(Ψ) CI(ψ)̂ Ψ̂ σ̂(Ψ) CI(ψ)̂
Initial bias: φ 0.891 0.002 [ 0.887 0.895 ] 0.900 0.002 [ 0.896 0.905 ]
Degree of ambiguity: δ 0.020 0.002 [ 0.017 0.024 ] 0.021 0.001 [ 0.019 0.023 ]
Degree of optimism: λ 0.454 0.012 [ 0.431 0.476 ] 0.394 0.012 [ 0.371 0.419 ]
R2

R̄2

0.041
0.803

0.003
0.035

[ 0.034 0.048 ]
[ 0.691 0.834 ]

0.063
0.943

0.003
0.010

[ 0.057 0.069 ]
[ 0.905 0.944 ]

Notes: Ψ̂ are point estimates of model parameters, σ̂(Ψ) is the respective standard deviation and CI(Ψ)
is the respective 95% confidence interval. Standard errors are calculated by bootstrapping the subjective
and objective survival probabilities by drawing with replacement in 500 bootstrap iterations.

̂

Source: Own calculations based on HRS, SSA and HMD data.

We have already argued that a model of rational Bayesian learning alone cannot
explain the observed patterns in the data because predicted subjective survival rates from
such a model would converge to the objective data, cf. observation 1. Quite in contrast,
our model of psychologically biased Bayesian learning which considers ambiguous beliefs
results in a decent fit to the average subjective survival expectations, also see figure
3. For both men and women, predicted subjective beliefs track the average subjective
beliefs from the data nicely. The model explains 80% − 94% of the variation of average
subjective survival rates whereby the fit is significantly higher in the case of women.12

Unsurprisingly, our parsimonious specification of average beliefs results in low R2s of the
regressions – 4.1% for men and 6.3% for women – because our representative agent model
can only capture some of the variation in answering patterns across individuals.

As far as the point estimates and the respective standard errors are concerned we first
observe that all parameters are estimated with high precision. Accordingly, parameters
δ and λ, which reflect the psychological biases in our model, are key for generating our
results and we thereby formally reject the hypothesis of pure rational Bayesian learning.
The point estimate of the initial bias, φ, is below one and captures the initial pessimism
of subjective beliefs documented in figure 1. Interpretation of the point estimate of 0.89
for men (0.9 for women) is that a person without any experience estimates that the
additive probability to survive from age 50 to age 80 – for which m − j = 30 – is only
φm−j 100% = 3.1% (4.2%) of the actual objective probability. At the age of 20, with one·

12The value of the two-sided t-test on the difference between the R2s for men and women is 108.96
with a p-value of 0.0. The values of Jarque-Bera test statistics for normality of the distribution of the
bootstrapped R2s (and their p-values) are at 0.02 (0.99) for men and at 4.49 (0.10) for women so that a
standard t-test is applicable.
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Figure 3: Actual and predicted survival probabilities for psychologically biased Bayesian
learning

(a) Men
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(b) Women

50 55 60 65 70 75 80 85 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
survival rates for women − psychologically biased Bayesian learning

age at interview

su
rv

iv
al

 r
at

e

subjective − actual
objective
subjective − predicted

Notes: Black dashed lines are 95% confidence intervals obtained from 500 bootstrap iterations.
Source: Own calculations based on HRS, HMD and SSA data.
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Figure 4: Degree of ambiguity (δh)
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Notes: Black dashed lines are 95% confidence intervals obtained from 500 bootstrap iterations.
Source: Own calculations based on HRS, HMD and SSA data.

year of experience, cf. assumption 3, the factor of underestimation is given from equation
m−j 30

(10) by 2φ +h · 100% = 2φ +1 · 100% = 35.4% (36.2%). Finally, person at the age of 50
2+h 3

who has already gathered 31 years of experience (h = 31), underestimates the additive
2φm−j

probability by factor +h · 100% = 2φ30+31 · 100% = 94.1% (94.2%) only.
2+h 33

We further find that the measure of optimism under ambiguity is significantly higher
for men, i.e., λ = 0.454 with a 95% confidence interval of [0.431, 0.476], than for women,
i.e., λ = 0.394 with a 95% confidence interval of [0.371, 0.419].13 At the same time, the
initial degree of ambiguity is almost identical for both sexes, also see figure 4 for the
degree of ambiguity δh for all ages 50− 89. According to our interpretation of ambiguous
beliefs, the weight (1− δh) measures how much evidence gained from rational Bayesian
learning is taken into account. Conversely, δh corresponds to the weight by which beliefs
are affected by some “myside bias,” in our model formalized as personal attitudes towards
optimism, resp. pessimism, as measured by λ. A literal interpretation of our estimation
results therefore suggests that respondents of both sexes are roughly affected by the same
degree of ambiguity, but men resolve their ambiguity in a more optimistic manner than
women. Furthermore, our results indicate that the initial ambiguity at the age of 19, cf.
assumption 3, is rather low; the point estimates are about 0.02.

We next investigate the sensitivity of our results and the associated psychological
interpretations with respect to focal point answers and the restrictions in assumption 3.

13The t-statistic of the two-sided t-test for equality of the point estimates is 3.53.
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4.3 Sensitivity Analysis

Focal Point Answers

An apparently serious problem in data on subjective survival probabilities is the existence
of “focal point answers” at self-reported survival probabilities of 0, 50, and 100 percent
(Hurd and Kathleen 1995; Gan, Hurd, and McFadden 2003). One interpretation for indi-
viduals indicating probabilities of 0 or 100 percent is that they have not fully understood
the question.14 Thus, focal point answers could be regarded as implausible estimates of
subjective probabilities. However, as discussed by Smith, Taylor, Sloan, Johnson, and
Desvouges (2001) and Khwaja, Sloan, and Chung (2006), these focal point answers at 0%
and 100% still have information content regarding the correct subjective belief because
smokers provide the answer 0% more frequently than non-smokers. The target age-group
specific answer pattern in our data displayed in figure 5 also illustrates that focal point
answers have information content for the true subjective belief because the frequency of
focal point answers at 0% increases with target age whereas the frequency of focal point
answers at 100% decreases with target age. The overall pattern is the same for male and
female respondents. Focal point answers at 50% may be due to round-off (Börsch-Supan
1998) or may reflect that respondents simply do not know much about their individual
survival probability (Hurd, Rohwedder, and Winter 2005).

One approach to deal with these problems followed in the literature is to formally
correct for focal point answers. Along this line, Gan, Hurd, and McFadden (2003) suggest
a Bayesian procedure that reduces the distance between subjective survival curves and
observed survival.15 In our context, this approach is obviously meaningless because our
aim is to explain the difference between subjective beliefs and the objective data. The
alternative, followed by Smith, Taylor, and Sloan (2001), Smith, Taylor, Sloan, Johnson,
and Desvouges (2001) and Khwaja, Sloan, and Chung (2006), is to acknowledge the
information content of focal point answers and to examine the sensitivity of results with
respect to these observations. We follow this latter approach.

In our model, focal point answers induce two sorts of biases. On the one hand, focal
point answers at 0% and 100% bias the degree of pessimism observed at young ages and
the degree of optimism observed at older ages, compare figure 1, downward and thereby
towards the objective data. This is so because the focal point answer at 100% is primarily
given by younger respondents whereas the focal point answer at 0% is primarily given
by older respondents, compare figure 5. On the other hand, focal point answers at 50%
induce opposite biases towards pessimism at younger ages and towards optimism at older
ages. This is so because the objective survival probabilities of younger respondents are
above 50% whereas those of older respondents are below 50%. Consequently, the first
form of bias favors our interpretation of the data whereas the second form works against
it.

14An alternative interpretation is that focal point answers reflect ambiguity, cf. Hill, Perry, and Willis
(2004).

15Other researchers, such as Bloom, Canning, Moore, and Song (2006), correct for focal point answers
by instrumental variables techniques.
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We therefore next investigate the sensitivity of our results with respect to focal point
answers by deleting in our sample all observations with focal point answers. This cor-
rection leaves us with a sample size of 24225 observations (10188 male and 14037 female
respondents) for our sensitivity analysis, that is, roughly 46% of interviewees in our full
sample have given focal point answers at either 0%, 50% or 100%, respectively.

Estimation results for this alternative data set are summarized in table 3. A com-
parison with our benchmark results in table 2 shows that the broad pattern of estimated
parameter values does not change. The only discernable difference to our benchmark
results is that the estimates of the degree of optimism, λ, do not differ much across sexes.
Therefore, our earlier interpretation that men seem to resolve their ambiguity in a more
optimistic manner than women, is not robust with respect to the exclusion of focal point
answers.

Table 3: Parameter estimates – Excluding focal point answers

Ψ̂ σ̂(Ψ) CI(ψ)̂ Ψ̂ σ̂(Ψ) CI(ψ)̂
Initial bias: φ 0.894 0.004 [ 0.886 0.900 ] 0.909 0.009 [ 0.901 0.934 ]
Degree of ambiguity: δ 0.023 0.003 [ 0.019 0.029 ] 0.028 0.002 [ 0.025 0.033 ]
Degree of optimism: λ 0.441 0.012 [ 0.417 0.467 ] 0.436 0.011 [ 0.415 0.455 ]
R2

R̄2

0.043
0.826

0.004
0.055

[ 0.035 0.051 ]
[ 0.615 0.833 ]

0.051
0.879

0.004
0.033

[ 0.043 0.058 ]
[ 0.774 0.901 ]

Notes: These results are based on a sample which excludes focal point answers at 0%, 50% and 100%,
respectively, cf. figure 5. Ψ̂ are point estimates of model parameters, σ̂(Ψ) is the respective stan-
dard deviation and ĈI(Ψ) is the respective 95% confidence interval. Standard errors are calculated by
bootstrapping the subjective and objective survival probabilities by drawing with replacement in 500
bootstrap iterations.
Source: Own calculations based on HRS, SSA and HMD data.

Choice of Initial Age

We next consider the sensitivity of our parameter estimates with respect to variations
in the initial age of our model. In our benchmark results, the initial age was 20, cf.
assumption 3, so that the youngest households observed in our data sample have already
gathered 50−20+1 = 31 years of experience. We here set the initial age to 50 so that the
youngest household in our data sample and model has only gathered 1 year of experience.
Results for this alternative specification are documented in table 4.

As documented in the table, the broad pattern of our results is not sensitive to our
choice of the initial age. We however find that the point estimates of the initial bias and the
initial degree of ambiguity are now significantly higher than in our baseline specification.16

16The values of the t-statistics for the two-sided t-tests on equality of the respective coefficients across
specifications are 16.5 (17.6) for ψ and 3.1 (8.5) for δ.
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Figure 5: Answer pattern

(a) Men
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Source: Own calculations based on HRS data.
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Both results are rather mechanical effects due to our specification in proposition 2. First,
observe from equation (10) that a decrease in the initial age decreases our index h and
has to be compensated by an increase of φ in order to hold the overall bias for a given
pair (j,m) constant. Second, observe from equation (9) that a decrease of experience (as
measured by a decrease of the index h) has to be matched by an increase in δ to hold the
degree of ambiguity for a given age, δh, constant.

Table 4: Parameter estimates – Sensitivity with respect to initial age

Men Women

Ψ̂ σ̂(Ψ) CI(ψ)̂ Ψ̂ σ̂(Ψ) CI(ψ)̂
Initial bias: φ 0.980 0.005 [ 0.968 0.990 ] 0.979 0.002 [ 0.974 0.983 ]
Degree of ambiguity: δ 0.034 0.004 [ 0.028 0.043 ] 0.048 0.003 [ 0.044 0.054 ]
Degree of optimism: λ 0.464 0.016 [ 0.432 0.494 ] 0.381 0.010 [ 0.361 0.403 ]
R2

R̄2

0.042
0.819

0.004
0.035

[ 0.034 0.049 ]
[ 0.712 0.849 ]

0.058
0.900

0.003
0.014

[ 0.052 0.064 ]
[ 0.858 0.910 ]

Notes: These results are based on a specification of our model with an initial age of 50 rather than 20, cf.
assumption 3. Ψ̂ are point estimates of model parameters, σ̂(Ψ) is the respective standard deviation and
ĈI(Ψ) is the respective 95% confidence interval. Standard errors are calculated by bootstrapping the
subjective and objective survival probabilities by drawing with replacement in 500 bootstrap iterations.
Source: Own calculations based on HRS, SSA and HMD data.

Speed of the Learning Process

Finally, we investigate the sensitivity of our results with respect to the speed of the
learning Bayesian learning process that we restrict in assumption 3 to one. That is, we
consider a specification in which the initial age is 20 as in our baseline results but the speed
of the learning process is now ten times faster in that we assume n(h) = 10 ·h. Results for
this specification that are reported in table 5 indicate that the speed of the learning process
interacts with our estimate of the degree of ambiguity, δ, whereas the other parameters
are roughly unaffected. More precisely, we find that, when the exogenous parameter ψ
is ten times higher than in our baseline specification, then the estimate of parameter δ
is about 10 times lower. Again, this mechanically follows from the specification of the
learning model in proposition 2, especially equation (9).

Because of the simplicity of our model – owed to our wish for parsimony – we do not
want to push the significance of any psychological interpretations of our findings too far.
As a very robust result of our analysis, however, we first find for both genders that the
assumption of a psychological “myside bias” in the interpretation of new information is
required to explain the survival belief formation of a representative agent. Second, the
initial degree of ambiguity required to generate these results, is relatively low because our
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Table 5: Parameter estimates – Sensitivity with respect to ψ

Men Women

Ψ̂ σ̂(Ψ) CI(ψ)̂ Ψ̂ σ̂(Ψ) CI(ψ)̂
Initial bias: φ 0.893 0.002 [ 0.890 0.897 ] 0.901 0.002 [ 0.899 0.906 ]
Degree of ambiguity: δ 0.002 0.000 [ 0.002 0.003 ] 0.002 0.000 [ 0.002 0.003 ]
Degree of optimism: λ 0.438 0.011 [ 0.417 0.459 ] 0.386 0.011 [ 0.364 0.409 ]
R2

R̄2

0.039
0.776

0.003
0.037

[ 0.032 0.046 ]
[ 0.662 0.812 ]

0.062
0.929

0.003
0.011

[ 0.056 0.067 ]
[ 0.890 0.931 ]

Notes: These results are based on a specification of our model with n(h) = 10h rather than n(h) = h, cf.
assumption 3. Ψ̂ are point estimates of model parameters, σ̂(Ψ) is the respective standard deviation and
ĈI(Ψ) is the respective 95% confidence interval. Standard errors are calculated by bootstrapping the
subjective and objective survival probabilities by drawing with replacement in 500 bootstrap iterations.
Source: Own calculations based on HRS, SSA and HMD data.

estimates of δ range from 0.002−0.02. This means that the initial deviation of our model
from the standard rational Bayesian learning model is low.

5 Discussion

5.1 Selectivity

One criticism raised against using population averages as the relevant objective data is
that our HRS sample may be prone to selectivity. Reasons for such selection biases
are either that households have moved to nursing homes and are not followed by HRS
interviewers or that sick people are reachable but may not be able to answer the question-
naire.17 Such selection effects may explain (some of) the optimism we observe at higher
ages in figure 1.

To address these concerns, we compute the HRS hazard rates between waves 2000 and
2002 and between waves 2002 and 2004, respectively, and compare them to the biannual
mortality rates in the population for the respective years. In figure 6 we display the
resulting hazard rates for men in panel (a) and for women in panel (b) between waves
2002 and 2004 for our full sample. The wiggles in the HRS data (dashed lines) are a
consequence of relatively small sample size. Evidently, the HRS hazard rates correspond
with the mortality rates in the population. The pattern is similar for the hazard rates
between waves 2000 and 2002 (and also for our sample corrected by focal point answers)

17As Mike Hurd pointed out to us, the first selection effect was particularly severe for the early waves
of the HRS because people were not followed into nursing homes in the past. Since we use the more
recent waves of the HRS where people are in fact followed into nursing homes, selection effects may only
play a role for the very old respondents in our sample, if at all.
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and therefore not shown.18

5.2 Interpretation

Next to our interpretation of the data – pessimism at younger ages, respectively optimism
at higher ages – several alternative interpretations are possible. First, the answering
patterns depicted in figure 1 may reflect cohort rather than age effects. To accommodate
this aspect we plotted the subjective data for various birth cohorts but this does not
give indication for relevant cohort effects. These cohort plots are provided in appendix
B.3. Second, the same answering patterns could be generated by a simple heuristic
model with biases in subjective beliefs towards 0.5 which we shall refer to as a “0.5-
bias”.19 Such a bias may, e.g., be due to the fact that individuals cannot deal with
small probabilities of death, respectively of survival, irrespective of age. Consequently,
all households underestimate objective survival probabilities that are above 0.5 (because
they overestimate the relatively small probability of death) and overestimate objective
survival probabilities that are below 0.5 (because they overestimate the relatively small
probability of survival). Then, since the objective survival rates of the young are above
0.5 and of the old are below, this may drive the data. To us, our interpretation of the data
is more sensible. First, pessimism at young age appears plausible because people may not
accurately take into consideration future increases of life expectancy due to technological
progress. Second, optimism at old age may result from the fact that people have survived
the gamble against death several times before and thus develop an optimistic bias.20

To further support our interpretation of the data, figure 7 presents evidence from the
German SAVE survey.21 In this survey, individuals are first asked to provide an estimate
for how long people of their cohort are going to live on average. Next, they are asked
whether they expect to live as long as the average, longer or shorter. In contrast to
questions for point estimates of survival probabilities, these are qualitative questions that
are accordingly not prone to a potential “0.5-bias”. As the graph in figure 7 illustrates,
the fraction of households replying that they are expecting to live longer than average
increases with age which clearly lends support to our interpretation of optimism at higher
ages. Also notice that the gap between expecting to live longer vs. shorter than average
increases after age 65−70, just as the differences between the subjective and the objective
survival rates in our HRS sample, cf. figure 1.

18If anything, we find for ages above 75 slightly higher mortality rates in the HRS between waves 2000
and 2002 than in the population which gives even more support to our interpretation of the data as
“optimism” at higher ages.

19This alternative explanation was pointed out to us by Mike Hurd.
20Dan McFadden made this point which favors our interpretation of the data.
21SAVE is a panel study of German households that focuses on saving and investment behavior, cf.

Schunk (2006) for a detailed description of the survey. We thank Bjarne Steffen for providing us with
the data.
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Figure 6: Objective survival rates in 2002-2003: HRS data versus population averages
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(b) Women
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Notes: Solid line: population wide hazard rates (mortality rates) for 2002-2003. Dashed line: HRS
hazard rates (mortality rates) between waves 2002 and 2004.
Source: Own calculations based on HRS, SSA and HMD data.
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Figure 7: Subjective survival expectations in SAVE

(a) Men

20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
male survival expectaions in SAVE

age

fr
ac

ti
o

n

shorter
longer
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Notes: Blue solid line: fraction of households expecting to live shorter than the average household of the
respective age group. Green dashed line: fraction of households expecting to live longer than the average
household of the respective age group.
Source: Own calculations based on SAVE 2005-2007, cf. Schunk (2006).
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6 Conclusion

The HRS data on subjective survival beliefs suggest a violation of the rational expecta-
tions paradigm as well as of the rational Bayesian learning hypothesis. In a first step we
therefore propose a new Choquet model of Bayesian learning that encompasses rational
Bayesian learning while it additionally allows for the existence of a psychological bias in
the interpretation of new information. For this purpose our formal approach combines
concepts, such as non-additive beliefs and generalized Bayesian updating, from the the-
ory of decision making under ambiguity with the standard approach of rational Bayesian
updating. The resulting model of psychologically biased belief formation is very parsimo-
nious in that it requires a low parametrization reflecting, first, an initially biased additive
estimator of subjective survival probabilities, second, a measure for the agent’s ambiguity
with respect to her initial estimator of her subjective survival probability, and, third, a
measure for the agent’s optimistic versus pessimistic attitudes with respect to this am-
biguity. Besides this parsimonious specification of the formation of subjective survival
beliefs, our learning model has the additional advantages that, first, it is axiomatically
founded within Choquet decision theory and, second, it is well supported by psychological
evidence on diverging learning behavior.

In a second step we estimate the parameters of our Choquet model by pooling the HRS
data. Despite the parsimonious parametrization we find that our model explains 80−94%
of the variation of average subjective survival probabilities in the data. The model’s
performance is statistically better for women than for men. For both genders we can
clearly reject the hypothesis that the HRS data on subjective survival probabilities may
be explained by rational Bayesian learning. The reason is that the rational Bayesian
learning hypothesis implies convergence of the subjective probabilities to the respective
objective data at higher ages but we instead observe an increasing degree of optimism
in the data. On the contrary, our more sophisticated model of psychologically biased
Bayesian learning can match these patterns in the data.

In our theoretical model we condition the updating of subjective beliefs on sex and
age of individuals only by which we obtain a representative agent interpretation. We
deliberately choose this strategy in order to focus the analysis on the main messages of
this paper that Choquet Bayesian learning is a more appropriate model for survival belief
formation than rational Bayesian learning. The strength of our parsimonious approach is
certainly that we can directly map our model into life-cycle models of consumption and
savings. Along this line, we will use our framework in future research in order to discuss
the demand for annuities and to evaluate the implications of our model for life-cycle
consumption and savings profiles.

However, our simple empirical strategy does not allow us to analyze how updating of
beliefs differs across a variety of observed idiosyncratic health shocks or other events that
are regarded as relevant for survival belief formation in the literature, such as parental
death. In our future research, we plan to modify our theoretical model in such a way that
the objective information is not based on average survival rates in the population but
rather on objective information at the individual level. This would enable us to condition
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updating of beliefs on observed idiosyncratic shocks in between waves of the HRS, similar
to Smith, Taylor, Sloan, Johnson, and Desvouges (2001). Along this line, our current
research focuses on the characteristics of households who develop increasing optimism,
respectively decreasing pessimism, in the SAVE survey, cf. figure 7.
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A Analytical Results

A.1 Generalized Bayesian Update Rule

In the present paper, we consider the so-called generalized (or full) Bayesian update
rule. An axiomatic foundation under the assumption of CEU preferences is provided in
Eichberger, Grant, and Kelsey (2006).

Definition 2. The generalized Bayesian update rule for determining the conditional ca-
pacity ν (A | B), B ∈ Σ, for a given prior capacity ν is given as follows: for all A ∈ Σ,

ν (A | B) =
ν (A ∩B)

ν (A ∩B) + 1− ν (A ∪ ¬B)
.

Observation 2. An application of the generalized Bayesian update rule to a neo-additive
prior results in the posterior belief

ν (A | B) = δB · λ + (1− δB) · µ (A | B) (12)

whereby
δ

δB = . (13)
δ + (1− δ) · µ (B)

Proof: Let A,B ∈/ {∅, Ω} and A ∩B = ∅. Then

δ λ + (1 δ) µ (A B)
ν (A | B) =

· − · ∩
δ · λ + (1− δ) · µ (A ∩B) + 1− (δ · λ + (1− δ) · µ (A ∪ ¬B))

δ · λ + (1− δ) · µ (A
=

∩B)

1 + (1− δ) · (µ (A ∩B)− µ (A ∪ ¬B))

δ · λ + (1− δ) · µ (A
=

∩B)

1 + (1− δ) · (µ (A ∩B)− µ (A)− µ (¬B) + µ (A ∩ ¬B))

δ · λ + (1
=

− δ) · µ (A ∩B)

1 + (1− δ) · (−µ (¬B))

δ
=

· λ + (1− δ) · µ (A ∩B)

δ + (1− δ) · µ (B)

= δB · λ + (1− δB) · µ (A | B)

with δB given by (13).

6
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A.2 Unconditional Probability of Receiving Information Ik
n

We have that

(
k
) µ

(
Ik
n | π

)
µ (π)

µ In =

( µ (π Ik
n)

n
) |
πk (1− π)n−k µ (π) ·Kα,βπα )

k
−1 (1− π β−1

=
K π β+n k 1α+k 1

α+k,β+n−k
− (1− π) − −

n Kα,β
=

(
k

)

( Kα+k,β+n−k

n
)

Γ (α + β) Γ (α + k) Γ (β + n
=

− k)

(k)Γ (α) Γ (β) Γ (α + β + n)

n Γ (α + β) Γ (α + k) Γ (β + n
=

− k)

(k)Γ (α + β + n)
·

Γ (α)
·

Γ (β)

n Γ (α + β)
=

k (α + β + n− 1) · ... (α + β) · Γ (α + β)

Γ (α + k − 1) · ... · α · Γ (α)·
Γ (α)

Γ (β + n− k − 1) · ... · β · Γ (β)·
Γ (β)

n (α + k 1) ... α (β + n
=

k 1) ... β
( ) − · · · − − · ·

k (α + β + n− 1) · ... · (α + β)

whereby the last equality readily follows from the fact that Γ (x) = (x− 1) · Γ (x− 1) for
x > 1 (Rudin 1976, Theorem 8.18).

B Data

According to our model two different types of data are required for the empirical analysis
that follows in section 4: (i) subjective conditional beliefs to live until target age and
(ii) predicted objective conditional probabilities to live from age r to age r + 1 for all
r = j, . . . ,m − 1. We here describe our data sources and the methodologies we apply to
construct these data.

B.1 HRS Data

The HRS is a national representative panel survey of individuals aged 50 and older and
their spouses. In addition to respondents from eligible birth years, the survey interviewed
the spouses or partners of the respondents, regardless of age. Thus, some (mostly female)
individuals are younger than 50 and few, younger than 40. In our application we focus on
the target group of the HRS and therefore only look at individuals of age 50 and older.
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Some respondents of the above question were 90 years old at the time of interview. We
do not include these observations in our analysis.

Younger HRS interviewees were also asked about their probabilities to live until age 75.
Some of these respondents have given inconsistent answers at certain points of time as their
self-reported probabilities to live until 75 are lower than the self-reported probabilities to
live until 80 or 85. We excluded these cases of evidently inconsistent answering patterns.
Furthermore, in some cases, individuals reported the same probability to live until age 75
as to live until age 80 or 85. As this answering pattern may be due to pure rounding and
is not strictly inconsistent with our theoretical model, we keep these observations in the
sample.

The presence of focal point answers in our data is discussed in subsection 4.3.

B.2 Cohort Life Tables

We adopt the Lee-Carter procedure (Lee and Carter 1992) to estimate trends in mortality
and to project survival rates into the future. The procedure allows us to describe and to
project the development of age-specific mortality rates over time within a parsimonious
framework. Basically, the model splits mortality rates into age-specific components that
are constant over time and a time varying survival index capturing the development of
mortality. Then, one can extrapolate the time series of the mortality index by means of a
suitable time series model. Future age-specific mortality rates can be recovered by linking
the projected mortality index to the age-specific components.

To describe the methodology, we now introduce a time index t. Following Lee and
Carter (1992) we decompose the average objective age-specific survival probability in
period t as

log(π?
t,r,r+1) = ar + brdt (14)

where ar and br are the age-specific constants and where dt is the time specific factor. We
opt for a parsimonious representation of the time series process of dt and assume that dt

follows a unit root process with drift

dt = θ + dt−1 + εt. (15)

where ε ∼ N (0, σ2
ε ).

We assign objective survival probabilities to each respondent in our HRS panel in each
wave τ ∈ {2000, 2002, 2004} as follows. We estimate for each wave τ , sex specific values

ˆ ˆof âr, br, θ, σ̂ε and calculate predicted values of π̂?
t,r,r+1 using data only until period τ .

We then proceed to the next wave and update the objective information also using the
data for the two years in between periods τ and τ +2. Our predictions of future objective
survival probabilities, π̂?

t,r,r+1, are calculated by iterating forward on

ˆ ˆ ˆdt = θ + dt−1

ˆ ˆπ̂?
t,r,r+1 = exp âr + brkt .

(16)

and ( )
(17)
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While we ignore uncertainty of our estimates of the age-vectors ar and br, we account
for uncertainty of the objective data by calculating standard deviations and confidence

ˆintervals of θ by bootstrapping. This uncertainty is also reflected in our estimates reported
ˆin section 4. Table 6 reports the sex and wave specific point estimates θ and the respective

standard deviations. Estimated parameter values for waves 1, 2 and 3 are based on
population data from HMD and SSA for 1900 − 2000, 1900 − 2002 and 1900 − 2004,
respectively.

ˆTable 6: Parameter estimates of θ

Men Women

θ̂ σ̂(θ) θ̂ σ̂(θ)
wave 1 -1.4186 0.5336 -1.8586 0.5339
wave 2 -1.4123 0.5426 -1.8287 0.5336
wave 3 -1.4518 0.4927 -1.8462 0.5103

Notes: Standard errors of θ̂ are calculated from 500 bootstrap iterations.
Source: Own calculations based on SSA and HMD.

Figure 8 shows data on, and predicted values for, the remaining life expectancy at
age 65 for wave 2002. The dashed lines are the bootstrapped 95% confidence intervals.
The new information on objective survival probabilities between waves only leads to
small changes in these predictions. Results for other years are therefore not shown.
Furthermore, life expectancy at birth and the remaining life-expectancies at other ages
display similar trends whereby the trend is increasing with age.

B.3 Cohort Effects

To accommodate the criticism that cohort effects may drive the pattern displayed in
figure 1, figure 9 presents the subjective beliefs for various cohorts. As there are no clear-
cut gaps between the respective line segments that represent birth cohorts, this stylized
evidence can not be regarded as an indication for relevant cohort effects.
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Figure 8: Predicted life expectancy at age 65 in year 2002

1960 1970 1980 1990 2000 2010 2020 2030 2040
76

78

80

82

84

86

88
life expectancy at age 65 (prediction for wave 2002)

year

le

 

 

male
female

Notes: Black dashed lines are 95% confidence intervals obtained from 500 bootstrap iterations.
Source: Own calculations based on HMD and SSA data.
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Figure 9: Subjective survival expectations by cohorts
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Notes: These graphs display the subjective beliefs of figure 1 for various birth cohorts.
Source: Own calculations based on HRS.
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