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Abstract 

This paper develops a new method of estimating rich, dynamic models of health based on 

multiple health measures available in the HRS. We apply these methods to investigate what 

generates the large socioeconomic gradient in health. Preliminary results suggest a large 

role for initial differences in health at age 50 that persist into old age. 



The Role of Dynamics in Health-Education

Gradient

Fabian Lange and Doug McKee (Yale University)

April 9th, 2010

1 Introduction1

Countless studies find that health and socioeconomic status are closely linked.

On the face of it, how health and SES co-vary is so well documented that

there seems little need to again take up the question how health varies with

SES and how this variation changes with age. Whether health is measured by

survival, by subjective measures such as self-reported health status (SRHS),

by objective health measures such as grip strength, or by virtually any other

measure, the same picture emerges: high socioeconomic status (SES) cor-

1The research reported herein was pursuant to a Sandell grant from the U.S. Social
Security Administration (SSA) funded as part of the Retirement Research Consortium
(RRC). The findings and conclusions expressed are solely those of the authors and do
not represent the views of SSA, any agency of the Federal Government, the RRC, Yale
University, or Boston College.
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relates with better health.2 Figure 1 illustrates this fact using 4 different

measures from the Health and Retirement Study (HRS). Regardless of how

one measures health, health is positively associated with SES.

However, closer inspection reveals that the strength of this association

varies with the measure used. Even within SES, statements about how health

2The literature on health inequalities across education levels is vast. We reference
here some recent papers. For hypertension and cholesterol see Cutler, Lange, Meara,
Richards, and Ruhm (2009). For self-reported health, Halliday (2009). For mortality:
Cutler et al. (2009) and Lleras-Muney (2005). For disability: Schenie, Freedman, and
Martin (2009). For diabetes: Smith (2007). For research focusing specifically on health
dynamics, consider Adams, et al. (2003), Meet, Miller, & Rosen (2003), and Hurd and
Kapteyn (2003), Halliday (2008, 2009), and Heiss, Börsch-Supan, Hurd, and Wise (2009).
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changes with age depend on the measure. Using SRHS or the Large Muscle

Index, we might be tempted to conclude that 50-year-old drop-outs are on

average of the same health as 80-year-old high school graduates. But, using

expiratory air flow, we might instead conclude that the health of 50-year-old

drop-outs is on par with that of 65-year-old high school graduates. And,

using log grip strength to measure health, we might again change our mind

and conclude that the health of 50-year-old drop-outs is equivalent to that

of 55-year-old graduates.

Much of what we think we know about the Health-SES gradient is there-

fore measure-dependent and which measure one uses will influence the an-

swers given to questions such as how the SES gradient varies with age. Fur-

ther, what measure of health one uses will affect whether differences in health

endowments, in the incidence of severe disease episodes, or in the rates of

functional decline are found to generate the SES gradient. And, as long as

different researchers do not agree on the answers to these questions solely be-

cause they use different health measures, there will also be no way to agree

on answers to questions such as what drives health inequality in the US or

what policies should be implemented to address the widening gap in health.

There is thus a need for describing the health process in a parsimonious

manner that combines the information contained in many different health

measures and is independent of the particular measure used to measure

health. The representation of health needs to be parsimonious to allow sys-

3



tematic investigation of the health process in a tractable manner.3 At the

same time, the representation of health needs to be general in the sense that

it is invariant to the health measure used. Without such invariance across

health measures, consensus and progress in understanding health dynamics

will be elusive. In this paper, we propose a method of estimating dynamic

models of health that both uses the information available in multiple health

measures and allows description of the evolution of health in a parsimonious

manner.

Our method adapts and combines two techniques first developed in differ-

ent contexts. In a first step, we use factor analytic methods to estimate how

health measures are related to an underlying latent variable called ”health.”4

For each age, we can identify how this latent variable is distributed by exam-

ining how the various health measures in the data are correlated.5 We can

also identify the joint distribution of the vector of health measures and the

latent health variable.6

We then model how the latent health variable evolves stochastically over

time. We estimate the parameters of this dynamic model using the method

3The focus on analyzing health measures in isolation has been driven by the desire
for parsimonious representations of health as well as the lack of rich health data in some
commonly used data-sets such as the PSID. The increasing availability of rich data on
health in large panel data sets such as the Health and Retirement Study (HRS) makes it
increasingly hard to justify analzing individual health measures in isolation. The need to
describe the dynamics of health in a parsimonious manner however remains.

4Factor models are a common data reduction strategy familiar in the psychometric
literature. In health, related methods are used by Halliday (2008, 2009), Heiss, Hurd, and
Wise (2009), and Meijer, Kaptyn, and Andreyeva (2008).

5This distribution is non-parametrically identified.
6This joint distribution is only parameterically identified.
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of simulated moments (McFadden, 1989).7 We minimize the distance be-

tween moments of the implied and the observed joint distribution of health

measures across age. To derive the moments implied by our model, we sim-

ulate the latent health process and use the static measurement model that

we estimated in the first step to map the simulated health process into a

sequence of health measures.

In addition to summarizing the information from multiple health mea-

sures in a parsimonious way, our method has a number of advantages. First,

because we separately estimate the static measurement and the dynamic

health model, the estimated age-conditional distribution of health will be

robust to misspecifying the dynamic health model. Second, because we have

multiple health measures and because our health measures include contin-

uous measures, we can non-parametrically identify8 the distribution of the

underlying health variable. This ability to consider distributions that devi-

ate from normality turns out to be empirically important. Finally, and most

importantly, our method allows us to specify and estimate dynamic models

of health that are substantially richer than existing models.

We implement our method using data from the HRS. For up to 16 years

of follow-up, the HRS panel provides rich data on the health of older individ-

uals. We rely on 3 continuous objective measures of health (grip strength,

expiratory air flow, and walking speed) as well as two subjective measures

7Simulation methods are becoming increasing popular in structural labor economics
and applied macroeconomics.

8In practice, we estimate flexible, but still parametric distributions of health.
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of health (a ”large muscle index” and SRHS). These masures allow us to

estimate very flexible distributions of latent health at different ages. We find

that the distribution of latent health is very far from normal, it is often bi-

modal and skewed to the left. These findings are generally not reproduced

by current dynamic models that are estimated in the literature.

We are still developing our dynamic model. In this paper, we assume

that the latent health variable follows a single lag autoregressive (AR-1)

process with time-varying parameters and we allow for endogenous mortality

by relating the probability of death to the underlying health variable and

age.

Estimates of this simple dynamic model generate a number of interest-

ing results. First, we find that endogenous mortality can not account for

the narrowing in the SES gradient observed at ages 75+. Second, we find

substantial individual persistence in the health dynamics and, in fact, the

evolution of health looks very similar to a random walk. Third, across ed-

ucation groups we find quite similar parameter estimates for the dynamic

specification and also for the mortality model. Together, we are tentatively

willing to hypothesize that the observed SES health gradient is not driven

by differences in the dynamic process governing health dynamics after age

50. Instead, both education groups experience similar health processes, but

these processes have sufficient persistence that existing differences in the SES

gradient at age 50 persist until relatively old age. At this point, however, we

want to emphasize that this result is very preliminary and that more analysis
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and estimates from richer dynamic models are needed to become confident

about these findings.

We proceed as follows. In Section 2, we describe the dynamic model of

health and the static health measurement model. In Section 3, we describe

the data that forms the basis of our estimating health measures. We show,

using the health measures contained in the HRS, that the observed varia-

tion in health with age and education depends significantly on the health

measure used. Section 4 presents results from estimating the static mea-

surement model and Section 5 presents the method we use to estimate the

dynamic model and presents the corresponding estimation results. Section 6

concludes.

2 A Model of Health and Health Measure-

ment

We begin by describing our assumptions about the data generating process

(DGP) behind the evolution and measurement of health. The model can be

separated into a dynamic model of latent health and a measurement model

that describes how latent health maps into observed health measures. In

later Sections, we estimate this model on the population of males for two

different education rates. In our exposition of the model, we will keep the

dependence on education implicit. To simplify the notation, we will also

suppress individual subscripts.

7



2.1 The Dynamics of Health

We assume that health of an individual at age a can be represented by a

scalar ha. For now, we assume that ha follows a first order autoregressive

process with drift:

ha+1 = µg + ρgha + υa (1)

The parameters that describe this process are the constant µg, the auto-

regressive parameter ρg and the variation of the innovation σ2
υ,g. The innova-

tion υa captures idiosyncratic shocks to individuals’ health and is normally

distributed. The parameters are indexed by g, which denotes the 5-year age

group an individual belongs to. We therefore allow the dynamic process

governing health to change with age.9

We initialize the random process (1) by specifying an initial distribution

F (h0) that describes health. This initial distribution is based on an estimate

of the distribution of health for the first age group observed in our data that

we obtain using the static measurement model described in Section 5.2 below.

The second equation of our dynamic model describes mortality. We as-

sume that individual mortality depends on the health status in the following

manner:

Pr(sa = 1) = Φ (α0,g + α1,gha) (2)

where sa is an indicator for whether an individual survived to age a+1 condi-

9In principle, we could allow the parameters to vary for each age of the individuals.
However, limited sample size forces us to group individuals into 5-year age groups.
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tional on being alive at age a, and Φ (.) denotes the cumulative distribution

function of the standard normal. Again, we allow the parameters to vary by

age group.

2.2 The Measurement of Health

Rather than observing ha directly, we observe categorical and continuous

measures of health. Let Ya stand for a m1 vector of categorical indicator

variables and Xa for a m2-vector of continuous indicator variables xm. The

total number of manifest categorical and continuous measurements is m =

m1+m2. Each categorical variable yj,a ∈ Y is assumed to reflect an underlying

latent index ỹj,a and cutoffs ckj,g. We also assume that each categorical variable

is ordered and has Kj segments.

Thus, each yj ∈ Y is linked to its latent counterpart yj ∈ Y :˜ ˜

yj,a = Σ
Kj

k=11(yj,a ≥ ck−1
j,g )˜ (3)

where 1(.) is an indicator function taking the value 1 if the condition in

parenthesis is true and 0 otherwise.

Collect the latent indices ỹj,a and the continuous measurement variables

xj,a in a vector Za. The measurements Za and ha are linearly related with

error εa :

Za =
Xa

Ya
= αg + Λ′gha + εa

(
˜
)

(4)

Here, αg denotes an m-vector of intercepts, Λg denotes an m-vector of
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factor loadings and εa an m-vector of independently distributed measurement

errors.10

The equations (3) and (4) define the measurement model. The parameters

in this measurement model are all subscripted by g, reflecting the fact that

we estimate a different measurement model for each of the 5-year age groups.

At this point, it becomes necessary to comment briefly on the identi-

fication of the measurement model.11 We need to identify the parameters

(αg,Λg), the vector of the variances of εa, and the distribution Fg (.) of the

latent health variable ha. Standard factor analytic results imply that, assum-

ing that we have 3 or more measurement variables, we can identify these

parameters only up to 2 normalizations, one for the scale and one for the lo-

cation of the distribution of the latent health variable. We will impose these

normalizations on the intercepts and the factor loading of one continuous

variable. This implies that health is measured with respect to units of this

first continuous measurement. We will always impose these normalizations

on the same measurement, regardless of age and education. To the extent

that this variable is objectively measured, we can use it to compare the level

of health across ages and education.

We also need to impose a second set of normalizations to account for the

fact that the index functions of ordinal categorical variables are only observed

10The assumption of independence is stronger than the uncorrelatedness assumption
typical in factor analysis. It is required to obtain identification of F(h) without parameteric
assumptions.

11We provide a more complete identification argument in Appendix 1.
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up to scale and location. We therefore normalize the intercepts and the error

variances of the measurement equations dealing with categorical variables to

0 and 1 respectively.

As we show in the appendix, we can go beyond identifying the variance of

ha and can non-parametrically identify the entire distribution Fg(ha). This is

possible because we have access to several continuous measurement variables.

It is important to understand that we rely on only a cross-section of health

measures at age a to identify the ’static’ parameters (αg,Λg, V arg(εa)) and

the distribution Fg (ha) . By contrast, we need longitudinal data on health

measures across age to identify the dynamic parameters
(
µg, ρg, σ

2
g, β0,g, β1,g

)
.

3 Data Description

For our study, we need a large survey with socioeconomic data and rich

data on individual health. We require continuous measurements of health,

but we can also utilize ordinal categorical health measures. The data can

contain both subjective and objective measures. Ideally, the data will follow

individuals over as long a period as possible. As a nationally representative

longitudinal study, the HRS is ideally suited for our purposes. Since 1992,

the HRS regularly collects data with nearly 20,000 respondents representing

the US population aged 50 and older. In order to maintain a representative

sample of the population aged 50+, new birth cohorts are enrolled every 6

years. We base our study on the 10 surveys conducted between 1992 and
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2006.12

Our data is based on the RAND HRS data files, the HRS Tracker files

and the physical measure files for the 2004 and 2006 waves. The RAND files

(version H) are a user friendly version of the HRS made available by the

RAND corporation and we obtain the subjective health variables as well as

the education and age variables from the RAND files. In addition, we merge

in 3 objective health measures (peak expiratory air flow, hand grip strength

and timed walking speed data) from the 2004 and 2006 physical measure

files. The HRS Tracker files (version 2.0, January 2008) provide Vital Stats

based on the National Death Index.13

The HRS data contains a multitude of subjective health measures and

we choose two from amongst these, an index of large muscle strength and

the SRHS measure which reports subjective health status on a 5 point scale

from excellent to poor. The index of large muscle strength is derived from

variables indicating difficulties in four tasks: sitting for two hours, getting

up from a chair, stooping, kneeling or crouching, and pushing or pulling

a large object.14 In addition to the subjective health measures, we use 3

objective health measures which are available in the 2004 and 2006 waves.

12We use data from the 1992, 1993, 1994, 1995, 1996, 1998, 2000, 2002, 2004, and 2006
surveys. Recently data from the 2008 survey has become available and we plan to expand
the scope of our analysis to cover this wave.

13The mortality data in the tracker files is based on finder files submitted to NCHS in
1995, 2000, 2002, and 2004. Based on the information in the tracker files, we can determine
the vital status and the year and month of death up to 2004.

14The SHLT is available for all waves in the study, whereas the large muscle index is
not available for waves 1 and for a subset of the sample in wave 2.
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The hand grip strength measure is a measure of general muscle strength and

of the presence of arthritis and other conditions in the hand. The measure

of lung function, peak expiratory air flow, is a measure of obstructive lung

disease. Declines in peak expiratory air flow have been shown to be related

to mortality, cognitive decline and physical decline. Hand grip strength has

also been shown to be related to general physical and medical status and

predicts mortality. Finally, the timed walk, which has only been collected

from individuals aged 65+, has been shown to be a highly reliable measure

of functional capacity and it predicts major health outcomes. There are a

number of variables that we have not utilized, both subjective and objective.

Our methodology allows use of these additional measures and indeed benefits

from on having a large set of health measures. We therefore plan to extend

our analysis to use a more complete set of health measures. 15

Table 1 presents summary statistics for our sample, treating each individual-

year observation as an independent observation.16 The age of the population

runs from 50 to 109, with a mean of about 67 years. We have access to

15As economists we are interested in the constraints that health limitations place on
individuals’ ability to participate in the labor force and in general on economic and social
activities. We therefore would like health measures that are closely related to general
functional status, rather than purely predictive of future health events. At this stage, we
hope that conversations with epidemiologists and medical professionals will enable us to
choose the appropriate health measures from among the set of variables available in the
HRS.

16To facilitate the empirical analysis, it will be useful to put the variables on about
the same scale. We will therefore standardize all continous variables using the entire
population of the same gender, but across all ages and education levels. These variables
will therefore have a mean of 0 and a standard deviation of 1. We also find it useful to
have all variables increase in health and therefore re-code the walking speed and the large
muscle index, so that healthier individuals have higher values.
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the continuous objective measures of health only for 2004 and 2006. Com-

paring 2004 and 2006 with the earlier years, we find that the population is

a little more than a year older, breaks down about equally into males and

females, and is about equally educated (two-thirds of the population have

a high school degree). Respondents report on average to be of good health

and the average number of difficulties reported for tasks making up the large

muscle index is about 1.3 (out of four). The large muscle index and SRHS

indicate that the population is slightly less healthy during the years 2004 and

2006, but this is likely due to the fact that the population is somewhat older

during the later years.

In this study, we examine how the educated and the less educated differ

in their aging process. We will now take a first look at this question using the

14



raw data. Figure 1, already discussed in the introduction, examines how the

average health measures vary with age. The top panels show the large muscle

index17 and a dichotomized version of the SRHS measure.18 The bottom two

panels show the average log grip strength and the expiratory air flow measure.

All of these measures display a significant SES gradient in health, but the

gradient is significantly larger when one examines subjective measures (such

as SRHS and the large muscle index) as opposed to objective measures.

There are other important differences between the health measures. For

instance, the objective measures decline almost linearly with age while health

as measured by the self rated health variable and the mean large muscle index

seems to decline at an increasing rate (prior to very old age). Depending on

the health measure used, researchers will also come to different conclusions

about the relative gradients in education and age. The health gradient in

education relative to the age gradient is much larger if one relies on SRHS

or the large muscle index than if one uses the measures of log grip strength,

expiratory air flow, or log walking speed. All these findings suggest that

estimates of the dynamic health process within and across education will be

sensitive to the health measure used.

We thus find large qualitative differences in the aging process depending

on the health measure used. This suggests the need to consider a broader

17We have inverted the large muscle index for this graph so that all indexes increase
with better health.

18Responses of poor and fair health are classified as ”bad health” and the remaining
(good, very good, and excellent) are classified as ”good health”.
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set of measures of health than just the dichotomous measures of good health

typically considered in the literature. We now explore this issue further. For

this purpose, we consider how much information there is in the other health

measures that is orthogonal to the good health measure, age, and gender. For

this purpose, we regress the various health measures on a full set of pairwise

interactions between age, gender, and good health19 - where age is measured

using a vector of dummy variables, one for each age. We find that the R-

squares for this specification are 0.18, 0.23, 0.29 and 0.14 for the large muscle

index, expiratory air flow only, log grip strength, and log walking speed mea-

sures respectively. These are modest R-squares, indicating that age and the

good health variable can explain some, but by no means all of the variation in

the other health variables. The question then arises, whether the remaining

variation in these health measures reflects purely noise or whether it in fact

contains information about the health of individuals. Table 2 investigates

this question by showing the correlations in the residuals from the above

described regressions.20 If the residualized variation represented pure noise

then we would expect these correlations to equal zero. Our interpretation of

these large and statistically significant correlations is that there is indeed a

lot of information in the health measures that is orthogonal to the self rated

19The variable ”good health” is the dichotomous variable constructed from the self-
reported health status variable and presented in figure 1. This measure is commonly used
in economic applications to summarize individual health.

20Remember that the large muscle index is inversely related with health, so that a larger
index implies worse health. All other variables are positively related to health.
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health measure.

Overall, the above reported statistics strongly suggest that the commonly

used dichotomous scalar health indices based on SRHS (eg. Halliday (2008,

2009) Heiss et al. (2008)) ignore a lot of the information about health con-

tained in other health measures. The main advantage of such dichotomous

scalar measures is that it is possible to describe how they evolve dynamically

in a parsimonious manner. It is typically much harder to describe the evo-

lution of a vector of health measures.21 We recognize the need to describe

21It is even harder to describe the evolution of a vector of health measures if they contain
both continuous and categorical variables that can take on many values.
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the data in a parsimonious way, but we also assert that any study of the

dynamics of health can only succeed if the measures on which it is based

are comprehensive measures of health, a requirement that is not satisfied by

simple indicators of ”good” and ”bad” health as are still commonly used in

much of the literature.

Factor analytic methods allow us to reconcile these two conflicting objec-

tives: they are based on information from many health measures and they

summarize this information in low-dimensional vectors of latent health.

4 Estimating the Distribution of Health - the

Static Measurement Model

We will now estimate how latent health is distributed within each age and

education group. We estimate the distribution of health treating all obser-

vations from the same age in the HRS as a separate cross-section. Only in

the next section, where we estimate the dynamic model, will we exploit the

panel nature of the data. We thus pool all observations of individuals from

the same age, regardless in what year these individuals appear in the HRS.

Furthermore, we combine ages into 8 5-year age bins, ranging from 50-54 to

85+. For each of the age groups, we estimate the same specification, which

we describe next.

We rely on the health measurements described in the previous section.

We normalize the distributions of the continuous variables such that the
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population mean of the log grip, air flow, and walking speed variables are 0

and the standard deviation is 1. We also impose the necessary normalizations

on the intercept and factor loadings of the log grip strength variable. Thus,

the latent health variable is measured in terms of (population) standard

deviations of the log grip strength variable.

We assume that the latent health variable is distributed as a mixture of

normal random variables:

Fg(ha) = pg,a ∗N µ1,g, σ
2
1,g + (1− pg)N µ2,g, σ

2
2,g

( ) ( )
(5)

Mixtures of normals deliver very general distributions and can accommo-

date the skewness, thick tails and bimodalities we observe in the data. We

show these estimated distributions below.

Table 3 reports the point estimates of the model for those aged 50-54,

65-69, and 80-84 for both types of education.22

22To keep the table manageable, we only show the point estimates. Again, complete
results are available from the authors upon request.
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As demonstrated in Table 4, we fit the data well. In that table we show

moments of the joint distribution of the health measurements for the age-

group of 50-54 year old males with high school degrees. Clearly, the model

does a very good job at fitting the joint distribution of the large muscle

index and the self-reported health variable. Because we only have the log

grip strength variable and the expiratory air flow variable for the years 2004

and 2006, the number of observations for which these variables are available is

much smaller. This implies that the parameter estimates of the static model

will primarily be driven by the subjective health measures. Nevertheless, we

also capture some of the joint variation in the objective health measures,
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even if we underestimate the correlation between these measures.

The most interesting results in Table 3 refer to the distribution of latent

health for different education and age groups. The relevant parameters are

reported in the rows 1 through 5. These are difficult to interpret directly and

we therefore show the implied distributions in Figures 3 a , b, and c.

The first thing to notice is that there are very large deviations from

normality. In particular, we observe that some of the distributions of latent

23



health are bimodal. Indeed among those aged 50-54 with less than 12 years

of education, we observe that the estimated distribution almost separates

into two distinct normal distributions with very little overlap.
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Figure 4 then shows how mean latent health varies across age. The trends

in health, as measured here, conform closely to the ones obtained from the

objective health measures and presented in figure 2. The deterioration in

health starts early and accelerates somewhat after age 70. Health differences

across education are sizeable, but they are not as large compared to the

age differences as those found using SRHS or the large muscle index only.
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Overall, this again underlines the importance of using distinct measures of

health to estimate the dynamics of health.

5 Estimating the Dynamic Model

In this section we propose and implement a new estimation method to recover

the parameters of the dynamic process, a method we will term simulated mo-

ment estimation of dynamic factors (SMDF). This method has the advantage

that it can accommodate complex dynamic processes such as those that gov-

ern how individuals age. In this paper, we demonstrate the methodology

using the simple dynamic process proposed in Section 2.

5.1 A Simulated Method of Moments Approach to Es-

timating the Dynamic Latent Health Process

We propose a simulation based algorithm that minimizes the distance be-

tween moments obtained from simulated health measurement data and mo-

ments of the observed empirical distribution of measures. Let Z̃ denote

a simulated panel data-set containing measures of health for individuals

at different ages. Based on Z we can compute simulated moments of the

joint and marginal distribution

˜
of the measures. Denote these moments

M̃ (θ) , where the simulated moments depend on the parameter vector θ

G
which is in turn composed of

{
µg, ρ

2
g, συ,g, α0,g, α1,g

}
. We can construct

g=0

the same moments from the observed data and will denote these moments
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M . Our estimator then chooses θ to minimize the distance D(M −M (θ)) =(
M − M̃

′
(θ)

̂)
W
(
M − M̃ (θ)

)
where W is an appropriately chosen

˜
weight-

ing matrix.

At the core of the estimator is an algorithm that lets us construct M̃ (θ) .

Before we explain this algorithm, note that we can separately estimate the

parameters of the mapping from the latent health variable into Za (as shown

in Section 4) and we can thus treat this mapping as known. Furthermore note

that the static measurement model estimated at age 50 provides an estimate

of the distribution of health for the age at which we are initializing the health

model. To construct the simulated moments of measurements M̃ (θ), we use

the following steps:

Step 1 Generate draws of initial health h̃0 for a large simulated sample of

individuals by drawing from the estimated distribution F0 (.) of the

latent health variable at the initial age a=0.

Step 2 Use the dynamic model to draw ha+1|ha for each individual. This

generates a simulated panel of health

˜
his

˜
tories.

Step 3 Use the implied survival probability Φ α0,g + α1,gha to simulate the

mortality process and generate a sample

(
of survivors.

˜ )

Step 4 For each age in the panel, use the estimates from the static measure-

ment model to draw z̃a|h̃a on the sample of survivors. In this manner,

we have a panel of measurements {z̃a}Aa=0 from which we can generate

M (θ) and for which we can generate the distance D(M M (θ)).˜ − ˜
28



It should be clear that steps 3 and 4 can be implemented for very com-

plex dynamic processes and that this proposed method therefore allows us

to estimate dynamic models that are substantially more complex than our

current AR-1 and mortality selection model.

5.2 Implementing the Simulated Moments Algorithm

The first requirement for implementing the above algorithm is to choose

moments M(θ). By construction, the measurement model matches the cross-

sectional distribution of the health measures in a given age group. The

moments that are available to estimate the dynamic models are therefore

moments from the joint distribution of health measures in a and a+1. Be-

cause the marginal distribution of a is given by the static model parameters

and we start our simulations at age a, we restrict ourselves to moments that

include measures from period a+1.

1. For each continuous objective measure we match

(a) average change in the measure from a to a+1. (3 moments)

(b) variances in the objective measures in a+1 (3 moments).

(c) covariances in the measures between a and a+1 (3 moments).

2. For each categorical subjective measure, we match the entire intertem-

poral transition matrix. Both the large muscle index and the self-rated

health index variable have 5 support points and there are therefore 25
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transition probabilities. The transition probabilities within each row

of the transition matrix must sum to 1 implying 5 restrictions on the

transition matrix. This means that each of the ordinal categorical vari-

ables contributes 20 moments for each of the age-transitions that we

are considering (2 * 20 moments).

3. To identify the survival process, we also match

(a) mean of the objective measures in a, conditional on dying before

period a+1 (3 moments).

(b) marginal distribution for each of the subjective measures, also

conditional on dying before period a+1 (2 * 4 moments)

(c) unconditional mortality rate (1 moment)

For each age group, we thus have a total of 61 moments that we use to

fit the 5 parameters of θ
(
µg, ρg, σ

2
υ,g, α0,g, α1,g

)
for each age group. The esti-

mated parameters will be asymptotically consistent regardless of the weight-

ing matrix chosen, but in finite sample, the choice of the weighting matrix

can lead to different estimates. We estimate our model using the conven-

tional two step process. First, we use an identity weighting matrix to get a

preliminary estimate of θ. Then we use this estimate to construct an opti-

mal weighting matrix (Hansen, 1982) and re-estimate. We have found little

difference between the preliminary and optimally weighted estimates.

At present, we have not yet computed standard errors. We will use stan-

dard method of simulated moment techniques to obtain the standard errors
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of the dynamic parameters estimated conditional on a particular set of static

parameters. We then propose using a parametric boot-strap on the parame-

ters of the static measurement model to account for the estimation error in

the static parameters.

5.3 Estimates of the Dynamic Model

Tables 5 and 6 contain the estimates of the dynamic model described above.

To enable evaluation of the relevance of modeling mortality when estimat-

ing the health dynamics, we show estimates obtained when mortality is

not included (Table 5) and estimates obtained for the full model includ-

ing mortality selection (Table 6). Standard errors are not yet available. The

parameter estimates from the model without mortality correction are re-

ported in columns 2-6, while the last column summarizes the average decline

in health implied by the parameters. This decline is calculated by taking

E [ha+1] − E [ha] = E [µ+ ρha + εa+1] − E [ha] = µ + (ρ− 1)E [ha] and de-

pends on the two parameters (µ, ρ) as well as the observed mean health for

each age: E [ha] . This decline is calculated without conditioning on survival

- it shows what would happen to average health in populations that are not

subject to mortality.23

23This is true even for Table 6. In table 6, the parameter estimates are obtained correct-
ing for mortality, but the health declines shown in the last column represent mean health
changes for a population that is not subject to mortality.
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Comparing the last columns in Tables 5 and 6 across education groups, we

observe that declines in health are of similar magnitude for both education

groups, except for very old individuals. For those older than 75, we observe

larger declines in health among the educated relative to the less educated

sample. This pattern is stronger for the estimates presented in Table 6 which
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correct for endogenous mortality based on latent health. Regardless whether

we estimate our parameters correcting for mortality or not, we find that

the predicted decline in health is stronger among the educated than the less

educated at old age. Thus, the finding that health differences narrow across

education groups during old age does not seem to be an artifact of selective

mortality.

To understand the size of the health declines with age, it is useful to

compare it to the within age-education standard deviation in the latent health

variable. This standard deviation varies somewhat with age, but typically lies

between 0.15 and 0.25.24 The annual declines in average health are therefore

comparable to about 1/3 of a standard deviation of health within any given

age group. We find these declines with age to be large (in other words, the

dispersion in health within age across individuals is relatively small compared

to the effect of aging).

We can also compare the volatility in health to the average declines in

health that we observe. The estimates of σ represent the standard devia-

tion in the individual innovations to health. Depending on the age group,

the estimates of σ vary between close to 0 and about 0.1 - suggesting that

individual health shocks are typically of about the same magnitude as the

age gradient, even though a number of individuals experience relatively large

declines. For instance, the standard deviation of 0.105 reported in Table 5

24Except at old age, when it increases to approximately 0.3 at ages 75-80 and 0.4 for
individuals aged 85 and more.
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for educated individuals aged 65-69 implies that on average 2.5% of the pop-

ulation experience a decline in health in each year that is about equivalent to

the average decline in health experience during 7-8 years of aging (using the

estimate of 0.028 reported for this group in the last column). Thus, while

volatility is not enormous, we do predict quite large year-on-year declines in

health for a non-trivial number of individuals.

When we consider the estimates of the mortality equation reported in

Table 6, we find quite similar parameter values for the mortality equation

estimated on both education groups and likewise across ages. It seems as if

the mortality differences observed across education groups (see Cutler, et al

2008, 2009) are not driven by differences in mortality conditional on observed

health, but are rather due to differences in distribution of the health variable

between high school drop-outs and high school graduates.

Consider next the estimates for ρ, the parameter governing the persistence

of health at the individual level. Our estimates for ρ are typically very close

to 1 for all ages, regardless for whether we account for mortality.25 If we take

the estimates of ρ that exceed 1 seriously, then we predict that individuals

whose health falls short of the mean will on average experience even further

relative deterioration of health. We find it plausible that individuals with

bad health might experience continued relative deteriorations. After a health

shock, individuals might enter a downward spiral that generates additional

25The estimates of ρ from the mortality corrected model are somewhat smaller, but not
across all age groups.
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declines in health, possibly resulting in death. However, the symmetry of the

specification implies that for estimates ρ > 1 we would likewise predict that

healthy individuals will, on average, continue to improve in health relative

to the mean in the population. This result is counterintuitive. One of our

next steps in this project is to relax this assumption of symmetry and allow

the level of persistence (ρ) to vary based on whether individuals are above

or below mean health.

Table 7 considers the fit of our model by presenting the observed (first

entry in each cell) and predicted (second entry) correlations in our health

measures across two years (the periodicity of the HRS). A number of pat-

terns are noteworthy. First, within measures there is substantially more

persistence than across health measures and our estimates generally do not

pick up this feature of the data. However, we do a substantially better job in

matching the cross-correlations between the subjective measures over time:

for example, for high school graduates the predicted correlation between the

large muscle index at t and the SHRS measure at t+2 is 0.37, whereas the

observed is 0.36. We have more difficulties reproducing the correlations of the

objective measures across time periods and find some quite large differences.

In particular, we find these differences to be large for the walking speed mea-

sure. We believe that these differences are due to the relatively small number

of individuals for whom we have objective measures. This results in impre-

cisely estimated parameters of the measurement model and thus generates

relatively noisy predicted correlations. This problem will be at least partially
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alleviated when we incorporate the 2008 data into our analysis.
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5.4 What Have We Learned About the SES-Gradient?

Some Speculative Results

Our results are preliminary and we are working to refine both the static

and the dynamic model. Nevertheless, we can speculate about what we

have learned concerning the sources of the gradient. We have found that

there are large differences in health across education at age 50. We also

found that the health process is close to a martingale (ρ ≈ 1) and that

estimated parameters are quite similar across education groups. Finally, we

found that the estimated parameters for the mortality function are quite

similar across education, suggesting that conditional on health, mortality is

similar across the two groups. Together these findings suggest that health

differences are, on average, persistent across individuals and that average

health differences are also quite persistent across groups, at least until about

age 75. Thus, our preliminary results suggest that health differences across

these two education groups are driven predominantly by differences in the

endowments of individuals entering the sample at age 50, rather than due to

differential health dynamics subsequent to age 50.

6 Conclusion

In this paper, we propose a new simulation-based method of estimating rich

aging processes over the life-cycle. Our approach splits the problem into two

parts. The first is a static measurement stage that recovers a distribution
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of the latent health variable conditional on controls at each age. The static

stage also delivers estimates of the mapping from latent health into observed

health measurements at each stage. The second stage of the approach focuses

on the dynamics. Using the estimates of the measurement model, we can

generate simulated joint distributions of the manifest measurement variables

implied by our model of dynamic health and our estimated measurement

model. The estimation proceeds by choosing parameters of the dynamic

model that minimize differences between cross-age moments in the simulated

and observed distributions of measures.

To demonstrate how this method works, we estimate a simple model

of health dynamics on panel data from the HRS. The estimates from the

first (static) stage deliver distributions of the latent health variables that

are highly non-normal. At all ages and education levels, we find evidence

for skew, bimodality and thick tails (kurtosis>3). In the second stage, we

estimate a simple dynamic model of health based on an AR-1 autoregres-

sive structure that allows for mortality selection based on the latent health

variable.

At the individual level, our results suggest that there is a substantial

degree of health volatility, but that there is also a high degree of persistence

in health. We find continuous declines in health over the life-cycle that are

of about the same size for those with and without high school degrees. Only

during old age are these differences in health narrowing. The decline in the

SES-gradient in health observed after age 75 is however not due to mortality
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selection - indeed correcting for mortality selection strengthens the finding

that the SES-gradient declines in old age.

Preliminary speculations suggest that differences in endowments at age

50, rather than differences in the health dynamics after age 50 are generat-

ing the observed SES gradients. The question we face now is whether this

preliminary speculative result will be robust to the refinements of the model

we are planning next.

Regarding these refinements, we now find ourselves in the position to

estimate more interesting dynamic models of health than the simple spec-

ification described above. Based on the results reported in this paper, we

plan to enrich the analysis along two dimensions. First, we plan to allow for

asymmetries in the persistence of health shocks - allowing for the possibility

that individuals who find themselves with better than average health might

regress back to the mean, while those with below average health might find

themselves on a persistent downward trajectory. We also believe that the

observed non-symmetries in the distribution of health (see Figures 3 a-c)

warrant a further refinement of the dynamic model. In particular, we are

hoping to integrate the data on health shocks in the HRS into our analysis.

The HRS records when individuals experience serious health events such as

heart attacks or diagnoses of cancer. Allowing the dynamics of health to vary

conditional on experiencing such events may explain the bimodality and skew

we observe in the static distributions of health.
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7 Appendix: Identification

The parameters that need to be identified are the dynamic parameters µa, ρa, σ
2
υ,a ,

the initial distribution of health F (h0) , as well as the parameters from the

measurement model
(
αa,Λa, c

k−1
j,a

)
. We will show that these parameters are

identified up to a normalization on the intercept and factor loading for one

of the continuous measurement equations, as well as the standard normaliza-

tions on variances and intercepts of categorical measurement equations. We

assume that we have access to at least 2 continuous measurement variables

and 3 additional continuous or categorical measurement variables.

First, we appeal to standard factor analytic arguments and assert that

with 3 continuous and categorical measurement variables, we can identify the

parameter vectors (αa, λa) and the variances of εa up to a normalization of

one intercept and one factor loading. We will impose these normalizations

on the same measurement equation at all ages.

Because F (h0) was unrestricted, F (ha) is also unrestricted and we there-

fore will next show, using Kotlarski’s Theorem, that F (ha) can be identified

using two continuous measurements only. Use the first and second contin-

uous measurement for this identification argument: x1,a and x2,a. We have

normalized the factor loading and intercept on the first and thus have

( )

x1,a = ha + ε1,a

x2,a = α2,a + λ2,aha + ε2,a
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Since (α2, λ2) are identified, we can write:

x1,a = ha + ε1,a

x2,a − α2, a

λ2,a

= ha +
ε2,a

λ2,a

and can treat the left hand side of both of these equations as observed.

Kotlarski’s Theorem implies that if ha, ε1,a,
ε2,a are jointly independent
λ2,a

and E [ε ] 2

(
1,a = E

[
ε ,a the marginal

)
]

= 0, then distribution of h can be
λ2,a

identified from the joint distribution of (x1,a, x2,a) . Therefore, F (ha) and the

parameters of the measurement equations are identified.

We have yet to discuss the identification of the parameters of the dynamic

equation (1) . For this purpose, we will restrict attention to two adjacent ages

(a, a+ 1) . First, note that we can identify the parameters {µa} using the

marginal distributions of health ha directly:

µ0 = E [h0]

E [ha+1] = µa + ρaE [ha]

Now, from equation (1) we get:

E [ha+1|Za] = µa + ρaE [ha|Za] + E [εa+1|Za]

=⇒ ρa =
E [ha+1|Za]− µa

E [ha|Za]
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E [ha|Za] can be directly obtained using the parameter estimates from the

measurement model. However, we do not have direct estimates of E [ha+1|Za] .26

However, we have the following:

E [Za+1|Za] = E [αa+1 + Λa+1ha+1 + εa+1|Za]

= αa+1 + Λa+1E [ha+1|Za]

⇔ E [ha+1|Za] =
(
Λ′a+1Λa+1

)−1
Λ′a+1 (E [Za+1|Za]− αa+1)

where the right hand side can be obtained using the estimated factor loading

matrices and the data. Therefore ρa is identified.

To identify σ2, consider the following expression:a

V ar(ha+1|Za) = V (µa + ρaha + εa+1|Za)

= ρ2
aV (ha|Za) + V (εa+1|Za)

=⇒ σ2
a = V ar(ha+1|Za)− ρ2

aV (ha|Za)

Again, we obtain V (ha|Za) directly from the measurement model and we

need to concern ourselves only with finding V ar(ha+1|Za). For this purpose,

we again use the joint distribution of the measurement equations.

V (Za+1|Za) = V (αa+1 + Λa+1ha+1 + εa+1|Za) = Λa+1V (ha+1|Za) Λ′a+1 + V (εa+1|Za)

= Λa+1V (ha+1 Za) Λ′a+1 + V (εa+1)|
26Note that E [ha+1|Za] 6= E [E [ha+1|Za+1] |Za] .
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⇔ V (ha+1|Za) =
(
Λ′a+1Λa+1

)−1
Λ′a+1 (V (Za+1|Za)− V (εa+1)) Λa+1

(
Λ′a+1Λa+1

)−1

where again the right-hand side is observed or estimable from the static

model.
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