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Abstract 

This paper examines the relation between technological progress and the riskiness of 

labor income using employer-employee matched income data from the United States.  Results 

suggest innovation is associated with a substantial increase in the labor income risk, especially 

for workers at the top of the earnings distribution. 

 

The paper found that: 

• Motivated by a simple model of creative destruction, the researchers draw a distinction 

between technological innovation advanced by the firm, or its competitors.  Own firm 

innovation is associated with a modest increase in worker earnings growth, while 

innovation by competing firms is related to lower future worker earnings.  

• Importantly, these earnings changes are asymmetrically distributed across workers: both 

gains and losses are concentrated on a subset of workers, which implies that the 

distribution of worker earnings growth rates becomes more right- or left-skewed 

following innovation by the firm, or its competitors, respectively.  

• Simulations reveal that the increased disparity in innovation outcomes across firms in the 

1990s can account for a significant part of the recent rise in income inequality. 

 

The policy implications of the findings are:  

• This analysis speaks to the relationship between technological change and individual 

earnings risk, a crucial input to any assessment of social insurance (including SSA) 

programs.  These results improve our understanding of fundamental frictions which make 

it difficult to share risks in the labor market.  First, changes in technology may displace 

demand for a particular worker’s skill set, a source of persistent downside risk.  Second, 

shifts in technology may reduce scope for workers to receive insurance from within the 

firm, since current employers may also be displaced following periods of high 

innovation. 

• Groups of workers whose earnings risk appears to increase following new technological 

developments are also more likely to apply for Social Security Disability Insurance 

benefits.  This result suggests that changes in expected future earnings levels and risk 

affect incentives for individuals to claim program benefits. 



Income inequality in the United States has increased sharply over the last thirty years, reaching

levels unprecedented during the post-war era. While the data indicate that firms have likely played

a central role in this increase, the exact underlying mechanism remains unclear.1 In this paper, we

explore the extent to which differences in the rate at which firms acquire new technologies contribute

to both workers’ labor income risk and income inequality. We find that higher rates of innovation

are associated with greater labor income risk—especially for workers at the top of the earnings

distribution. In addition, we find that the increased disparity in innovation outcomes across firms

in the 1990s has likely been an important factor in the rise of income inequality across firms.

To guide the empirical work, we start with a simple model of endogenous growth, in which firms

are collections of product lines. Firms innovate randomly, at potentially different rates. Production

of each good requires a worker/manager. Importantly, these workers’ human capital is partly specific

to a particular good/firm combination and incentive considerations imply that workers’ incomes

are sensitive to firm profits. Firm innovation can take the form of an improvement in one of its

own product lines, or by acquiring the technological lead in a product line owned by another firm.

If the firm innovates on its own good, the existing worker either receives a wage increase, or is

replaced, depending on whether the improvement takes the form of an improvement in the quality

of the product or an improvement in production methods. If the firm loses a product line to its

competitors, the worker is displaced.

An increase in the rate of innovation by the firm can therefore lead to an increase in both

the mean, and the dispersion, in the path of future earnings for the firms’ incumbent workers.

While some workers are better off since their specific human capital becomes more productive,

others are replaced and experience subsequent income declines. By contrast, increases in the rate

of innovation by competing firms are associated with more negatively skewed earnings growth. A

subset of employees are displaced and experience large income declines, whereas others are largely

unaffected. Innovation is thus linked with an increase in the risk of human capital; highest paid

workers face more downside risk because they have the most to lose if their specific human capital

is displaced—since their outside option is not proportional to their prior wage.

The model is simple, yet it leads to rich and testable predictions about links between innovation

and the distribution of worker earnings. First, innovation by the same firm is associated with

an increase in the dispersion of worker earnings for incumbent workers. Second, innovation by

competing firms leads to more negatively skewed earnings growth. Third, both of these effects

are larger in magnitude for higher-paid workers. Fourth, the imputed profit-sharing elasticities—

comparing the change in worker earnings to change in profits—is larger in response to competitor

innovation. This effect arises because the possibility that even own firm innovation can be associated

with displacement of a worker’s specific human capital creates a wedge between expected firm and

worker-level outcomes that is not present for competitor innovation.

1See, for instance Song, Price, Guvenen, Bloom, and Von Wachter (2019); Barth, Bryson, Davis, and Freeman
(2016).
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To empirically examine these predictions, we combine administrative data on worker earnings

from the Social Security Administration (SSA) with the firm-level measure of the value of innovation

developed in Kogan, Papanikolaou, Seru, and Stoffman (2017). Kogan et al. (2017) propose a

measure of the economic importance of each innovation that combines patent data with the stock

market response to news about these patents. An advantage of this measure is that it allows us

to connect each new invention or production method to its originating firm, and therefore isolate

innovation by the worker’s own firm from innovation by its competitors. Kogan et al. (2017) show

that their measure is strongly related to changes in ex-post profitability across firms and document

evidence consistent with creative destruction. We find similar reallocative effects for worker earnings.

Indeed, we find that increases in firm innovation are associated with increased future earnings

growth for the firms’ own workers. The magnitude of these effects is sizeable and own-firm effects are

consistent with most extant estimates of profit sharing elasticities. Importantly, we also document

that more valuable innovation by competing firms is associated with significantly lower future worker

earnings. Moreover, holding fixed the associated change in expected firm profits, workers’ earnings

growth is more sensitive to innovation by competing firms relative to own firm innovation.

Importantly, and consistent with the theoretical model, these effects are not distributed symme-

trically across all workers in the same firm. In particular, we use quantile regressions to characterize

how the entire distribution of worker earnings growth rates shifts following innovation by the firm,

or its competitors. We find that subsequent to innovation by their own firm, the distribution

of earnings for the firm’s own workers becomes more positively skewed. That is, the increase in

average earnings we documented above is concentrated among a small subset of workers. Conversely,

innovation by competitors is associated with more negatively skewed earnings growth for the firm’s

workers. Specifically, most workers experience small declines in income, while a minority experiences

a significant drop in its labor earnings.

Thus, in addition to changes in the conditional mean of worker earnings growth, innovation by

either the firm or its competitors is empirically associated with higher labor income risk—that is,

shifts in the higher moments of income growth. This raises the question of whether this increase in

ex-post heterogeneity in worker outcomes indeed corresponds to increased income risk, or whether

it is related to ex-ante worker characteristics. For instance, it could be that all innovations are

complementary to high-skill workers, and since we do not observe worker skill, the increase in

dispersion in earnings growth rates in response to innovation that we are picking up could simply

be an increase in the skill premium. Though worker skill is unobservable, it is likely correlated with

income levels. Therefore, we next allow our estimates to vary depending on the worker’s earnings

rank within the firm (net of life-cycle effects) as a proxy for her skill level. We find that conditioning

on earnings levels does little to reduce the degree of heterogeneity in worker outcomes, which is

consistent with the idea of higher uncertainty in future income.

Importantly, we find that the sensitivity of earnings growth to innovation outcomes (either
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by the firm, or its competitors) is greater for the highest paid workers (top 5% within the firm).

Specifically, the increase in the positive skewness of income growth in response to firm innovation is

higher for its top workers; these top workers however also experience an increase in the left tail of

earnings growth when their own firm innovates. Top workers are also significantly more adversely

affected than the average worker to innovation by competing firms: top workers experience a 14

percentage point reduction in the 5th-percentile of earnings growth in response to a one-standard

deviation increase in the average level of innovation by competing firms—compared to 2.1 to 6

percentage points reduction for other workers. These findings are particularly striking in light of

the traditional view that technology tends to complement high-skill labor (Goldin and Katz, 2008).

In brief, our quantile regression estimates reveal that higher innovation is associated with

significant increases in the dispersion of labor income. In the model, earnings losses are driven by

job loss. An advantage of our data is that they allow us to track workers across firms, and therefore

examine the extent to which this increase in the risk of earnings declines is related to separations.

Consistent with our model, we find that workers employed in firms that do not innovate while their

competitors do are more likely to subsequently exit the firm. Since the distribution of earnings

growth rates is substantially more negatively skewed for exiting relative to continuing workers, a

higher chance of job loss following high innovation outcomes by competing firms partially accounts

for the higher negative skewness in earnings growth rates.

However, we also find a correlation between the rate of innovation and shifts in the distribution

of earnings growth even among the subset of exiting workers. Specifically, we find that workers

that leave the firm following periods of high innovation, either by the firm or its competitors, are

significantly more likely to experience large subsequent declines in their labor income than workers

which leave during periods of low innovation. We find that extended periods of unemployment

(years of zero earnings) following periods of high innovation are partly responsible for this increase.

Workers that exit following periods of high innovation are also more likely to apply for disability

insurance than workers exiting following periods of low innovation. These patterns go beyond our

simple model, but they suggest that innovation can have a persistent effect on worker productivity

that extends beyond job loss.

We conclude our analysis with a decomposition exercise which quantifies the role of innovation

for the recent rise in income inequality among firms. A stylized fact in the data is that the aggregate

amount of innovation increased during the 1990s. Importantly, this increase in the level was also

accompanied by an increase in the dispersion of innovation outcomes across firms (even within

industries). That is, most of the increase in the amount of innovation was concentrated among a

relatively small subset of firms. By simulating from our estimated quantile regression model, we

show that this increase in the dispersion in firm innovation outcomes can account for much of the

increase in between-firm inequality during the last few decades. In terms of within-firm inequality,

we find both the increase in the level as well as the dispersion in innovation play a role.
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An important caveat in our analysis is that the statistical relations we document need not be

causal. For instance, workers in R&D-intensive firms may have a different earnings structure than

workers in other firms. Though we cannot exclude the possibility that omitted variables are the

main drivers of our results, several factors mitigate this concern. First, our innovation measures are

strongly related to future firm profits, but are uncorrelated with past trends in firm profitability.

Second, the response of the distribution of worker earnings to innovation is qualitatively distinct

from its response to changes in profitability or stock returns—particularly in regards to competitor

outcomes. This difference suggests that the effects we are picking up are specific to innovation

outcomes per se, as opposed to shifts in underlying profitability trends at the industry level. Third,

our point estimates are essentially unchanged if we expand the set of covariates to include controls

for past R&D spending. In this case, we are comparing firms that spent the same resources on

R&D, and exploiting the fact that some firms produce patents that generate a larger stock market

reaction than other firms. Last, the fact that we are measuring patent values based on stock market

reactions—which should be unexpected—mitigates the issue, though only on the intensive margin.

Our work contributes to our understanding of the role played by technological innovation and

displacement in the product market on the distribution of worker earnings—both in terms of shifts

in labor income risk as well as changes in income inequality. Our focus on firms is motivated by

the well-documented large and persistent differences in firm productivity (Syverson, 2011); the

importance of firms in understanding worker earnings inequality (Song et al., 2019); and the evidence

that workers share in firm profits (see, e.g., Card, Cardoso, Heining, and Kline, 2018, for a survey).

Our focus on firms distinguishes our work from most of the existing work studying the link

between technological innovation and worker earnings. That is, existing work has emphasized the

complementarity between technology and certain types of worker skills (Goldin and Katz, 1998, 2008;

Autor, Levy, and Murnane, 2003; Autor, Katz, and Kearney, 2006; Goos and Manning, 2007; Autor

and Dorn, 2013); or the substitution between workers and new forms of capital (Hornstein, Krusell,

and Violante, 2005, 2007; Acemoglu and Restrepo, Acemoglu and Restrepo). Most of these papers

do not distinguish between innovation and adoption. By contrast, our use of patent data implies

that we necessarily focus on innovation rather than adoption of existing technologies. As a result,

we draw a distinction among innovations depending on which firm they originate in. In this regard,

our work is closest to the literature that studies the impact of firm innovation on the earnings of its

own workers (van Reenen, 1996; Aghion, Bergeaud, Blundell, and Griffith, 2017; Kline, Petkova,

Williams, and Zidar, 2019; Howell and Brown, 2020). The central finding in this body of work is

that innovative firms pay higher wages to incumbent workers, consistent with ex-post sharing of

quasi-rents. We view our work as complementary; rather than focusing on estimating rent-sharing

elasticities, our main goal is to understand the relation between technological progress, product

market competition, and the entire distribution of worker earnings changes—shifts in labor income

risk and earnings inequality. Our work is also related to Aghion, Akcigit, Bergeaud, Blundell, and
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Hemous (2018), who document a correlation between regional differences in patenting activity and

top income inequality.

Our work is related to the literature arguing for the importance of firms for understanding

the dynamics of income inequality. Abowd, Kramarz, and Margolis (1999) propose that firm

heterogeneity accounts for a substantial fraction of wage differences across workers. Song et al.

(2019) document that a substantial fraction of the rise in income inequality across workers can be

attributed to increasing differences in average worker pay across firms. Card, Heining, and Kline

(2013) find similar effects in Germany. For firms to play a role in inequality, they need to share

rents with workers. Card et al. (2018) survey the literature on estimating rent-sharing elasticities

between workers and firms; most recent studies that employ micro data deliver estimates that lie

between 0.05 to 0.15. For our purposes, the most directly relevant estimates are those of Lamadon,

Mogstad, and Setzler (2019), who estimate an coefficient of 0.13-0.14 using recent IRS data from the

US. Our OLS point estimates for stayers that compare the increase in profitability to the increase in

the earnings of the average worker following innovations by the firm are somewhat higher than this

range (0.195), but are closer to the estimates reported in van Reenen (1996) and Kline et al. (2019),

who report elasticities of 0.29 and 0.19–0.23, respectively. In addition, our quantile regressions

reveal substantial heterogeneity in worker outcomes following technological improvements by the

firm—or its competitors—that are otherwise obscured. This is particularly important, in light of the

fact that the existing literature has often interpreted these elasticities as a measure of the degree of

insurance provided by the firm’s owners to workers (Guiso, Pistaferri, and Schivardi, 2005; Lagakos

and Ordoñez, 2011; Fagereng, Guiso, and Pistaferri, 2018). Our findings illustrate that focusing on

average responses can mask substantial heterogeneity in ex-post outcomes across workers.

Last, our work has important implications for the literature studying the asset pricing implications

of skewness in labor income. For example, Constantinides and Ghosh (2017) and Schmidt (2016),

argue for the importance of ‘income tail risk’ for the equity premium. Their estimates build on the

counter-cyclical nature of the left-skewness of idiosyncratic income changes documented by Guvenen,

Ozkan, and Song (2014). In terms of magnitudes, the effects we document are comparable: focusing

on top workers, the increase in the left tail of income growth following periods of innovation by

competing firms in the same industry is comparable in magnitude to the increase in the left tail

documented in recessions documented in Guvenen et al. (2014). Our findings, therefore, directly

relate to the recent work arguing that investors might want to purchase insurance against states

with high degrees of technological innovation (Papanikolaou, 2011; Garleanu, Kogan, and Panageas,

2012; Kogan, Papanikolaou, and Stoffman, 2020).

1 Theoretical Framework

We begin by proposing a simple model that serves to guide the empirical work. The model is based

on a relatively standard quality-ladder model in continuous time in the spirit of Aghion and Howitt
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(1992), modified to include human capital.

Aggregate output is produced by a continuum of intermediate goods xi,t

Xt =

∫ 1

0
xνi,tdi, ν ≤ 1. (1)

Each intermediate good can be produced by a continuum of competitive firms, which however differ

in their level of efficiency in producing each good. Firms produce each good using a constant returns

to scale technology; hence, we can assume that only the most productive firm finds it profitable to

produce each good. In particular, good i is produced using the following technology,

xi,t = qi,t ei,t li,t, (2)

where qi,t is the quality of the leading producer and li,t is a second factor of production (unskilled

labor, robots, or land) that can be freely reallocated across product lines. In addition, the production

of an intermediate good requires a skilled worker or a manager. There is a moral hazard friction, in

that the skilled worker can potentially divert output—hence, ei,t denotes the fraction of un-diverted

output. However, diversion is costly: if she diverts 1 unit of output, she can only effectively steal a

fraction β. Hence, the (static) solution to this moral hazard friction is to provide the manager with

a fraction β of the profits from producing good i, in which case she is indifferent between stealing

versus not. In what follows, we assume that this is the case, which implies that there is no output

diversion in equilibrium—and hence ei,t = 1.

Given our assumptions, the total profits from producing good i—to be shared by the skilled

worker and the firm’s owners—are equal to

Πi,t = At q
ν

1−ν
i,t , (3)

where

At ≡ ν
(

1− 1

κ

) [∫ 1

0
q

ν
1−ν
i,t di

]−ν
(4)

depends on the distribution of leading quality qi,t across goods.

A firm is a collection of goods that finds it profitable to produce—that is, goods in which the firm

is the leading producer. Innovation is exogenous and takes the form of improvements in efficiency:

over an instant dt, a firm can innovate with probability λf,t dt. Here, λf,t ∈ (λL, λH) is a two-point

Markov process, with transition probability from state s to s′ given by µss′ dt. Conditional on

successfully innovating, a firm either improves upon one of the goods it is already producing (with

probability µ) or (with probability 1− µ) on one of the goods produced by another firm f ′ in the

set C(f)—that is, one of the firm’s ‘competitors’. For illustrative purposes, assume each firm f has

one competitor f ′. Quality improvements are proportional, so conditional on innovation, the firm’s
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production efficiency qi,t increases by a factor κ > 1.

On the firm side, the model we have described so far is relatively standard. An increase in the

rate at which the firm innovates λf,t leads to an increase in firm profits and employment, as we

can see in Panel A of Figure 1. Profits increase more than employment because innovation partly

consists of improving existing varieties, which do not require the firm to hire additional workers. By

contrast, increases in the rate of innovation by the firm’s competitors (here, firm f ′) is associated

with lower profits and employment, since the likelihood that the firm loses the technology lead in

one of its own products increases.

However, innovation can potentially displace workers. Specifically, if a firm improves upon one of

the goods it is already producing, the skilled worker is retained with probability p; with probability

1− p the firm hires a new worker (from the unemployed pool). One interpretation here is that the

firm can improve on a good either by improving the quality of the product, or by improving its

production method. In the former case, the worker is retained; in the latter case, the worker is

potentially replaced. In addition, once a firm f loses the leading efficiency to a competitor f ′, the

position is eliminated and the worker previously assigned to that good becomes unemployed; firm

f ′ hires a new worker from the unemployed pool. Unemployed workers receive a benefit bt, which is

equal to a fraction of the salary of the least-paid manager.

The goal of the model is to illustrate the implications of firm innovation for the distribution of

worker earnings growth. Due to the moral hazard friction, the skilled worker j assigned to good i

receives a fraction of the firm’s profits,

wj,t = β At q
ν

1−ν
i,t . (5)

Consider the earnings at time t+ dt for the worker j that is currently assigned to good i (owned by

firm f) at time t. Over the next interval dt, her earnings growth evolves according to,

log

(
wj,t+dt
wj,t

)
− d logAt =



ν

1− ν log κ > 0 with prob. p µλf,t dt

log

(
bt
wj,t

)
< 0 with prob.

[
(1− µ)λf ′,t + (1− p)µλf,t

]
dt.

0 otherwise

(6)

Equation (6) illustrates how a shock to the rate of innovation by a firm λf,t, or its competitor λf ′,t,

is likely to affect the future distribution of earnings growth for a given worker. A positive shock

to λf,t increases the likelihood of both an increase as well as a decrease in worker earnings. By

contrast, an increase in the rate of innovation by competing firms λf ′,t increases the likelihood of

large earnings losses. Importantly, the magnitude of earnings losses is increasing in the worker’s

current wage wj,t due to the assumption that her continuation value after displacement (which is

equal to bt) is independent of her current wage.
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Panel B of Figure 1 illustrates these effects by presenting the sensitivity of different percentiles

of worker earnings growth over the next five years to an increase to the rate of innovation by a

firm λf,t or its competitors λf ′,t. We see that a positive shock to the rate of competitor innovation

λf ′,t lowers the mean wage growth of incumbent workers by making the distribution of earnings

growth more negatively skewed. By contrast, a positive shock to firm innovation λf,t leads to a

moderate increase in both the average as well as the dispersion in earnings growth rates—that is,

it is associated with both a mean shift, but also a widening of the worker earnings distribution.

In both cases, the downside exposures of higher income workers are significantly larger, whereas

outcomes look fairly similar at the median and in the right tail.

The key model mechanism that drives these findings is profit sharing—due to the moral hazard

friction—combined with the specificity of a worker’s human capital. Specifically, profit sharing

implies a pass-through from firm to worker earnings. Human capital specificity to a particular

firm/product combination implies that innovation is associated with the likelihood of job loss.

Naturally, this specificity encompasses several mechanisms through which technological innovation

may affect labor income—such as automation of certain tasks or skill displacement. Importantly,

we view the ‘managers’ in our model as skilled workers, with some of these skills being specific to

a particular firm or production method. By contrast, we can interpret the second, flexible factor

li,t as including unskilled workers, who are likely to be equally productive across all production

methods or firms.

Last, the model implies that the ‘profit-sharing’ elasticity, that is, the sensitivity of worker

earnings to firm profits varies with the nature of the shock. By comparing the mean increase in

worker earnings in Panel B to the increase in firm profits in Panel A, we can see that the ratio

of the former to the latter is much greater in response to a shock to competitor innovation λf ′,t

than in response to innovation by the firm λf,t. The reason is that a positive shock to λf ′,t has an

unambiguous adverse effect on both firm and worker earnings. By contrast, a positive shock to λf ′,t

increases firm profits, but can lead to earnings declines for some workers. In both cases, costs are

concentrated on a subset of workers whose human capital is displaced, so innovation is accompanied

by an increase in earnings risk, especially for the highest paid workers.

In sum, the simple model we have outlined in this section makes the following predictions. First,

innovation by the same firm is associated with an increase in the dispersion of worker earnings for

incumbent workers. Second, innovation by competing firms leads to more negatively skewed earnings

growth. Third, both of these effects are larger in magnitude for higher-paid workers. Fourth, the

imputed profit-sharing elasticities—comparing the change in worker earnings to change in profits—is

larger in response to competitor innovation. The main part of the paper focuses in analyzing these

predictions in the data.
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2 Data and Measurement

Here, we briefly summarize the data on labor income and firm innovation outcomes used in our

analysis. All details are relegated to Appendix B.

2.1 Labor Income

Our data on worker earnings are based on a random sample of individual records for males, drawn

from the U.S. Social Security Administration’s (SSA) Master Earnings File (MEF). The MEF

includes annual earnings information for every individual that has ever been issued a Social Security

Number. The earnings data are based on box 1 of the W2 form, which includes wages and salaries;

bonuses; the dollar value of exercised stock options and restricted stock units; and severance pay.

The data are based on information that employers submit to the SSA, and are uncapped after 1978.

Importantly, the data have a panel structure, which allows us to track individuals over time and

across firms.

Our main sample covers the 1980–2013 period, and the data construction closely follows Guvenen

et al. (2014).2 In addition, we closely follow Guvenen et al. (2014) and impose several additional

filters to the data that exclude self-employed workers and individuals with earnings below a minimum

threshold, which is equal to the amount one would earn working 20 hours per week for 13 weeks at

the federal minimum wage. See Appendix B.1 and Guvenen et al. (2014) for further details.

Our key outcome variables of interest are growth rates of income, cumulated over various periods,

and adjusted for life cycle effects. We follow closely Autor, Dorn, Hanson, and Song (2014) and

construct a measure of a worker’s average earnings between periods t and t+ k, that is adjusted for

life-cycle effects:

wit,t+h ≡ log

(∑h
j=0 W-2 earningsi,t+j∑k

j=0D(agei,t+j)

)
. (7)

Here, W2 earningsi,t is the sum of earnings across all W-2 documents for person i in year t. In

the denominator, D(agei,t) is an adjustment for the average life-cycle path in worker earnings that

closely follows Guvenen et al. (2014). In the absence of age effects, D(agei,t) = 1, hence (7) can be

interpreted as (the logarithm of) the average income from period t to t+ h, scaled by the average

income of a worker of a similar age.

Equation (7) describes a worker’s age-adjusted earnings; to conserve space, we will simply refer

to it as worker earnings. When focusing on worker earnings growth, our main variable of interest

will be the cumulative growth in (7) over a horizon of 5 years:

gi,t:t+5 ≡ wit+1,t+5 − wit−2,t. (8)

2Specifically, a sample of 10 percent of US males are randomly selected based on their social security number
(SSN) in 1978. For each subsequent year, new individuals are added to account for the newly issued SSNs; those
individuals who are deceased are removed from that year forward. We start our analysis in 1980 to overcome potential
measurement issues in the initial years following the transition to uncapped earnings.
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Examining (8), we note that the base income level over which growth rates are computed is the

average (age-adjusted) earnings between t− 2 and t. Focusing on the growth of average income over

multiple horizons in (8) emphasizes persistent earnings changes, and therefore helps smooth over

large changes in earnings that may be induced by large transitory shocks or temporary unemployment

spells (see Appendix B.3 for more details). In our baseline case, we will consider the ratio of 5-year

forward earnings to the last 3 years of cumulative earnings (note that we simulated the same

quantity in the model above). Altering the forward window allows us to explore the persistence of

our findings. For brevity, we restrict attention to a backward window of 3 years.

A key advantage of our data is that they allow us to track employees across firms. Therefore,

when computing (8) for a given worker i at time t, her earnings growth rate may include income

from more than one firm if she were to switch employees at some point between years t+ 1 and

t+ 5. In some cases, we will distinguish earnings growth for workers that move or remain with the

current employer—examine mobility as a separate outcome. Since we want to allow for delayed

effects on mobility, but at the same time capture worker earnings changes in the new job, we will

define a mover as those workers that do not work in the same firm at t+ 3 as they did in year t.

Consequently, the earnings growth of a mover will include the change in her salary from moving out

of the current firm. Stayers are defined as workers who did not move between t and t+ 3.

2.2 Innovation Outcomes

Our main independent variables of interest are innovation outcomes at the firm level. The most

broadly available data on innovation are based on patents. An advantage of using the patent data

is that they can be linked to the firm level, which allows us to separately estimate the relation

between worker earnings and innovation by the firm and its competitors. Hence, importantly, our

definition of ‘innovation’ will be somewhat narrow as a result. That is, we will not be measuring

firms’ adoption of technologies developed by other firms. Hence, our results will be rather distinct

from the literature focusing on the complementarity between skilled workers and new types of

capital goods (for example, robots, as in Acemoglu and Restrepo (Acemoglu and Restrepo)).

We first construct an empirical analogue of λf,t and λf ′,t in the model in Section 1. In the model,

all innovations are equal in quality, since κ is constant. In the data, they are likely not. Indeed, a

major challenge in measuring innovation by using patents is that they vary greatly in their technical

and economic significance (see, e.g., Hall, Jaffe, and Trajtenberg, 2005; Kogan et al., 2017). We will,

therefore, be weighting individual patents by their estimated market value using the data by Kogan

et al. (2017), henceforth KPSS, who develop an estimate of the market value of a patent based on

the fluctuations in the stock price of innovating firms following patent grants. Thus, their measure

is only available for public firms. We, henceforth, refer to their measure as the ‘market’ value of a

patent.
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We follow KPSS closely and construct measures of the value of innovation by the firm

Af,t =

∑
j∈Pf,t ξj

Bft
(9)

and its competitors,

AI\f,t =

∑
f ′∈I\f

(∑
j∈Pf ′,t

ξj

)
∑

f ′∈I\f Bf ′t
. (10)

Here, ξj corresponds to the KPSS value of a patent. The set of competing firms I \f is the ‘leave-out

mean’—defined as all firms in the same SIC3 industry, excluding firm f . Large firms tend to file

more patents. As a result, both measures of innovation above are strongly increasing in firm size

(Kogan et al., 2017). To ensure that fluctuations in size are not driving the variation in innovative

output, we follow KPSS and scale the measures above by firm size. We use book assets as our

baseline case, but our main results are similar if we scale by the firm’s market capitalization instead

(see, e.g., Appendix Figure A.16). Appendix B.4 provides more details on the construction of these

variables. In the context of the model in Section 1, we can interpret Af,t and AI\f,t as empirical

proxies of λf,t and λf ′,t.
3

A potential shortcoming of patent-based measures of innovation is that the exact timing of

its impact on firm wages is somewhat ambiguous. A successful patent application helps the firm

appropriate any monopoly rents associated with that invention, hence dating patents based on their

issue date seems like a natural choice. The patent issue date is also the date at which the fact that

the patent application is successful, and therefore forms the basis for estimating the value of the

patent based on the firm’s stock market reaction in KPSS. For our purposes, however, this timing

choice may be somewhat problematic when examining how worker earnings respond to the firm’s

own innovation. For instance, the firm may decide to pay workers in advance of the patent grant

date. Hence, income changes subsequent to the patent grant date may be affected by temporary

increases in worker salaries prior to the patent grant date. To address this concern, we date the

firm’s own patents based on the year that these patents are actually filed. Hence, when computing

Af,t, the set of patents Pf,t includes patents that are filed in year t.4 Consistent with this timing

convention, Appendix Figure A.3 indicates that firm profits respond sharply in the year immediately

after patents are filed, despite the fact that most patents take several years to be approved, and are

3In particular, many firms have hundreds or thousands of patent applications in a given year. Many of these
innovations, however, are likely to be incremental. Weighting by the estimate of the market value of a patent helps
down-weigh more marginal patents, but the result is still a continuous measure which is likely to be a noisy estimate of
the underlying level of firm innovation. We, therefore, interpret a high value of Af,t as indicative of a higher likelihood
that the firm has improved its efficiency in a given product—that is, as a positive shock to λf,t. An alternative
strategy would have been to only focus on patents on the right tail of the distribution of Af,t; however, doing so would
require us to impose an arbitrary threshold.

4Patent applications (and hence, filing dates) are only disclosed ex-post. Hence, the value ξj is still computed using
the market reaction on the patent grant date. Our implicit assumption is that this value represents a known quantity
to the firm as of the application date, similar to the assumptions regarding the number of future citations a patent
receives that are common in the innovation literature (see, e.g., Hall et al., 2005).
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associated with substantially larger cumulative responses of profits. Patents, by competing firms

used in the construction of AI\f,t, are dated as of their issue date. That said, this choice of timing is

not a main driver of our findings on earnings growth rates, as most results are qualitatively similar

if we date the firm’s patents as of their grant date.

2.3 Overview of the sample

Our final matched sample includes approximately 14.6 million worker-years observations. Appendix

Table A.1 provides some summary statistics for the key variables in our analysis. To arrive at this

sample, we merge the firm-level data on innovation with individual workers’ earnings histories using

EIN numbers. On average, matching rates are quite high: we can find records in the MEF for about

84% of the public firm-years (see Appendix Tables A.2 to A.3 and Figure A.1 for further details).

The industry composition of the matched and unmatched sample is similar. Matched firms tend to

have similar levels of book assets and somewhat higher levels of employment (as reported on 10-K

forms) and innovative activity than the unmatched sample of public firms. In terms of the workforce

composition, employees at matched public firms are slightly older; earn about $16 thousand dollars

more per year; and have worked on average slightly longer in the same firm.

3 Innovation, profits, and worker earnings

Here, we examine the link between firm innovation, firm profits, and worker earnings. The simple

model we outlined in Section 1 helps guide the empirical work. In particular, the model predicts that

firm innovation leads to a more right-skewed distribution for worker earnings growth. By contrast,

the distribution of worker earnings should become more left-skewed in response to innovation by

competing firms. Last, the model implies that the increase in the left tail should be greatest for the

firm’s top workers. In what follows, we will examine these predictions in more detail.

3.1 Firm Innovation

We begin by describing the behavior of the firm innovation measure Af during our sample period

in Figure 2. Panels A and B plot the average level of innovation during our period. We see that

the 1990s was a particularly innovative period—which is in line with the evidence in KPSS, among

others. Panel C plots the dispersion in the Af measure across firms; we see that the cross-sectional

dispersion in firm innovation outcomes (as measured by the coefficient of variation in Af ) exhibited a

similar increase as the level. Panel D plots the share of aggregate innovation that can be attributed

to the most innovative firms in each year (the top 1% innovation share). We see that this period

was also associated with an increase in the concentration of innovative outcomes: during the late

1990s, the top 1% of innovative firms accounted for over 50% of the total innovative output in our

sample, compared to 35% in the mid 1980s.
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One possibility is that these facts may simply be indicative of differential industry trends during

this period. However, this is not the case. Specifically, Panels E and F decompose the dispersion in

innovation outcomes Af across firms into a within- and a between-industry (SIC3) measure. As we

see in Panels E and F, this increase in dispersion is primarily a within-industry phenomenon. By

contrast, we find no comparable shifts in the dispersion of outcomes across industries.

In brief, the data suggest that the innovation boom in the 1990s was primarily driven by a

small set of firms in each industry. The natural question is then what do these facts imply for the

distribution of worker earnings. In the context of the model in Section 1, we can interpret these

shifts as an increase in the dispersion of λf,t across firms. We will revisit these findings in Section 6

and explore their implications for inequality in worker earnings.

3.2 Innovation and Profitability

Kogan et al. (2017) show that differences in innovation outcomes are associated with substantial

heterogeneity in subsequent growth in profitability and employment, and they document sizeable

creative destruction effects. To set the stage for what follows, we begin by revisiting part of their

analysis. To make our results comparable with our worker-level regressions, we estimate a slightly

modified specification than KPSS that closely parallels our worker earnings growth measure (8).

That is, we estimate

log

[
1

|h|
h∑
τ=1

Xf,t+τ

]
− logXf,t = ahA

sm
f,t + bhA

sm
I\f,t + ch Zft + uft+h, (11)

the dependent variable in equation (11) is the growth in the average level of profits and employment

over the next h years. Thus, equation (11) can be interpreted as the analogue of the model impulse

responses in Figure 1 in the data.

The vector Z includes several controls, including one lagged value of the dependent variable and

the log of the book value of firm assets to alleviate our concern that firm size may introduce some

mechanical correlation between the dependent variable and our innovation measure. For instance,

large firms tend to innovate more, yet grow slower (see, e.g., Evans, 1987); controlling for other

measures of size yields similar results. We also control for firm idiosyncratic volatility σft because it

may have a mechanical effect on our innovation measure and is likely correlated with firms’ future

growth opportunities or the risk in worker earnings. Further, we include industry and time dummies

to account for unobservable factors at the industry and year level. We cluster standard errors by

firm and year. To evaluate economic magnitudes, we normalize Af and AI\f to unit standard

deviation. Last, we restrict the sample to the time period of the SSA data (1980–2013), though

similar estimates obtain in the full sample.

Our main coefficients of interest are ah and bh, which measure the response in firm profits,

employment, and productivity to innovation by the firm and its competitors, respectively. Panel
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A of Table 1 presents our estimates for horizons h of 3, 5, and 10 years. We see that future firm

profitability is strongly related to the firm’s own innovative output. The magnitudes are substantial;

for instance, a one-standard deviation increase in firm’s innovation is associated with an increase

of approximately 8% in the average level of profits over the next 5 years. Similar to KPSS, the

estimates of b suggest that innovation is associated with a substantial degree of creative destruction.

In particular, a one-standard deviation increase in innovation by firm’s competitors is associated

with a decline of 4.9% in the level of profits over the next 5 years. As we compare the estimates

between horizons of five to ten years, we see that these are largely permanent effects.

In sum, we see that own-firm innovation is associated with increased firm profitability. By

contrast, firms that do not innovate when their competitors do, experience declines in profits. These

results are consistent with models of endogenous growth, in which firm innovation is an important

driver of profitability. However, another possibility is that it is related to some unobservable source

of heterogeneity that itself is responsible for increased firm profits. Hence, we next examine whether

innovation is related to past trends in profitability. That is, we re-estimate equation (11), but now

allow h to take negative values. Appendix Figure A.2 plots the estimated coefficients ah and bh for

values of h = −5 to h = 10. Examining both panels of the figure, we see that the relation between

innovation by the firm (Asmf,t ) or its competitors (AsmI\f,t) at time t and profitability prior to year t

is essentially zero. These results reveal that our innovation measure is not related to pre-existing

trends in profitability. In addition, we view these results as supportive of our convention for dating

patents.5

3.3 Innovation and Mean Worker Earnings

Next, we examine what happens to worker earnings in response to innovation by the firm or its

competitors using a similar specification as above

gi,t:t+h = ahA
sm
f,t + bhA

sm
I\f,t + ch Zi,t + εi,t, (12)

where gi,t:t+h is the (cumulative) growth in employee i’s labor income over the next h years —

defined in equation (8) above, and Af and AI\f are the measures of firm and competitor innovation

defined in equations (9) and (10) above. Our vector of controls Z includes a similar set of firm-level

controls as our firm-level regressions above (11); in addition, we saturate our specification with a

battery of controls that aim to soak up ex-ante worker heterogeneity. Specifically, we include flexible

non-parametric controls for worker age and past worker earnings as well as recent earnings growth

5As a further robustness check, we also estimated equation (11) using alternative choices for the timing of innovation.
Consistent with our prior, we see a somewhat larger response of firm-level outcomes to own firm innovation when
we date patents according to their filing as opposed to their grant date. Conversely, the relation with competitor
innovation is stronger when competitor patents are dated according to their issue date. See Appendix Figure A.3 for
more details.
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rates.6 To ensure that our point estimates are comparable to the analysis above (in which the

unit of observation is at the firm-year as opposed to the worker-year level), we weigh observations

by the inverse of the number of workers in each firm-year. We compute standard errors using a

block-resampling procedure that allows for persistence at the firm level (that is, the analogue of

clustering by firm). See Appendix C.1 for more details.

Panel B of Table 1 reports the estimated coefficients a and b, which capture the relation

between average future worker earnings and innovation by the worker’s own firm, or its competitors,

respectively. As before, we examine horizons of 3, 5 and 10 years. Focusing again on the 5-year

horizon, we see that a one-standard deviation increase in Af is associated with a cumulative increase

of 1.4% to the average worker earnings in the firm. By contrast, a one-standard deviation increase

in innovation by competing firms is followed by a 1.9% decline in average worker earnings in firms

that do not innovate. Comparing across columns (horizons) in each panel, we again see these are

associated with essentially permanent changes in worker earnings.

One way of assessing the economic magnitudes of these coefficients is by relating them to the

findings of the literature on estimating profit-sharing elasticities. Specifically, we compare the

estimated magnitude of the responses in average worker earnings to firm innovation to the response

of firm profitability in Section 3.2 above. Focusing on the 5-year horizon, we see from Panels A and

B that a one-standard deviation increase in Af is associated with a 7.2% increase in profitability

compared to a 1.4% increase in earnings for the firm’s own workers. These numbers imply a

profit-sharing elasticity approximately equal to 1.4/8.0 ≈ 0.17. To put this number in context to

the literature, we compare it to van Reenen (1996) and Kline et al. (2019), since their setting is

most comparable to ours. These studies report elasticities of 0.29 and 0.19 (all workers)–0.23 (firm

stayers), respectively.

Importantly, however, we note that the profit sharing elasticity that is implied by examining

the response to competitor innovation is much larger. Specifically, focusing now on the 5-year

horizon, we see that a one-standard deviation increase in innovation by competing firms AI\f

is associated with a 4.9% decline in profitability and a 1.9% decrease in earnings for the firm’s

own workers—implying a rent-sharing elasticity of 1.9/4.9≈0.38. Thus, our estimates suggest that

declines in profits associated with competitor innovation are passed through at a higher rate than the

benefits from own firm innovation. This finding is consistent with the model: since firm innovation

may lead to replacing a worker with a new one, the expected earnings growth of incumbent workers

is smaller than the firm’s increase in profits

In sum, we find that innovation is strongly related to firm growth and to creative destruction.

6We construct controls for worker age and lagged earnings wit−4,t by linearly interpolating between 3rd degree
Chebyshev polynomials in workers’ lagged income quantiles within an industry-age bin at 10-year age intervals. In
addition, to soak up some potential variation related to potential mean-reversion in earnings (which could be the
case following large transitory shocks), we also include 3rd degree Chebyshev polynomials in workers’ lagged income
growth rate percentiles (that is, gi,t−3:t in (8)), where we also allow these coefficients to differ across 5 bins formed
based upon a worker’s rank within the firm (defined in section 3.5).
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Firms that innovate experience higher future profits, and workers in these firms experience higher

earnings. By contrast, firms that fail to innovate while their competitors do experience declines in

profits and worker earnings fall. Importantly, we document a significant asymmetry in our estimated

profit-sharing elasticities that is consistent with the simple model we outlined in Section 1. In

the model, an increase in firm innovation has a positive impact on firm profits but an ambiguous

effect on worker earnings, since some workers are replaced. By contrast, an increase in competitor

innovation leads to a decline in both firm profits and worker earnings.

Our findings so far do not differentiate among workers in the same firm. Hence, they correspond

to the conditional mean of earnings growth faced by a particular worker employed by a given firm

that, either innovates or its competitors do. In the context of our model, greater innovation by the

firm also leads to higher income risk for its incumbent workers. More broadly, innovation may affect

not only the conditional mean, but also the conditional variance—or higher moments—of earnings

growth. For example, some innovations may introduce new production methods that displace the

skills of some workers. Alternatively, firms that lose market share to competing firms may reduce

their scale of production and lay off workers; if part of these workers’ skills are specific to the firm,

they will experience a dramatically lower growth in earnings than workers who are not laid off.

Thus, focusing on average responses can mask substantial heterogeneity in ex-post outcomes across

workers.

As a first step in this direction, we estimate separately equation (12) for workers that subsequently

remain with the firm (stayers) or leave the firm (movers). Here, we define movers at time t as

workers who have left the firm over the next 3 years; doing so allows for some delay in the decision

to exit, but also allows for worker earnings at the new firm to affect the dependent variable. In

the last two columns of Table 1, panel B, we re-estimate the regressions for the subset of workers

depending on whether they stay or leave the firm, where we only report estimates at a 5 year horizon

for brevity.

Consistent with the spirit of our model, we see that movers are more adversely affected by

innovation than stayers. Earnings of workers that leave the firm do not increase following innovation

by the firm—in contrast to stayers. The own firm coefficient for job stayers increases to 1.6, corre-

sponding with an implied elasticity of 0.195, whereas the coefficient for movers is indistinguishable

from zero for movers. Similarly, earnings of workers that leave the firm fall much more in response

to innovation by competing firms than the earnings of workers that remain. When we reestimate

competitor innovation coefficients for stayers and movers we obtain implied pass through coefficients

of 0.296 ≈ -1.5/-4.9 and 0.448 ≈ -2.2 / -4.9 for stayers and movers, respectively. As before, however,

focusing on mean effects significantly obscures heterogeneity in worker outcomes. Over the next few

sections, we further elaborate on these reallocative effects.
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3.4 Innovation and Worker Earnings Risk

We next examine how the conditional distribution of worker earnings growth rates is related to

innovation by the firms, or its competitors, using quantile regressions. In particular, we next estimate

the response of individual quantiles in worker growth rates gi,t:t+h, using a specification that is

directly analogous to equation (12). The only difference is that, instead of the conditional mean, we

are interested in how specific percentiles of earnings growth shift in response to an innovation shock.

We focus on the median, as well as six additional quantiles q describing the tails of the earnings

growth distribution, q ∈ {5, 10, 25, 50, 75, 90, 95}. We use the functional form and methodology for

jointly estimating multiple conditional quantiles of Schmidt and Zhu (2016), where the median and

log of the difference between each two adjacent quantiles are assumed to follow a linear model like

our specification of the conditional mean in equation (12). As before, we weigh observations by the

inverse of the square root of the number of workers in each firm and compute standard errors using

a block-resampling procedure that allows for persistence in the error terms at the firm level. We

relegate all further methodological details to Appendix C.1.

We begin by examining how the distribution of worker earnings growth varies following innovation

by the firm Af . The top-left panel of Figure 3 plots the estimated response (the average marginal

effects) of different quantiles of worker future earnings growth quantiles to firm innovation; it is the

empirical analogue of Panel B of Figure 1 based on simulated data. To illustrate how the estimated

marginal effects map into shifts in the distribution of earnings growth rates, the bottom-left panel

compares the unconditional cumulative distribution function (CDF) of earnings growth (in black)

to the implied CDF following a one-standard deviation increase in firm or competitor innovation

(red line). The right side of Figure 3 plots the corresponding responses to innovation by competing

firms AI\f .

In brief, we find that innovation is associated with shifts in both the variance and the skewness

of future worker earnings growth. That is, the shift in average worker earnings we documented in

Table 1 is distributed asymmetrically across workers. To interpret these findings, it is useful to keep

in mind the rich set of control variables—which include flexible functions in worker age, and the level

and growth rate in past earnings. Thus, these estimates reveal the extent to which the distribution

of future earnings growth shifts for workers with similar ex-ante observable characteristics—following

innovation outcomes.

Specifically, focusing on the workers employed by innovating firms, we see that a one-standard

deviation increase in the firm’s innovative output is associated with a 0.009 log point increase

in the median earnings growth rate, which is approximately 40% smaller in magnitude than the

mean responses in Table 1, suggesting substantial skewness. Indeed, we see that workers that are

employed in innovating firms experience a higher likelihood of a substantial increase in their labor

income: the 95th and 75th percentiles of income growth increase by 0.02–0.03 log points following

a one-standard deviation increase in Af,t, compared to a 0.003–0.004 log point increase in the
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25th and 5th percentiles. Hence, the distribution of earnings growth becomes more right-skewed

in innovating firms. To put these numbers in perspective, we note that the median worker in the

sample experiences earnings growth of approximately zero, while the unconditional 95th percentile

of income growth is 0.58 log points.

The two right panels of Figure 3 examine the relation between earnings growth and innovation

by other firms in the same industry. We see that workers in firms that do not innovate experience a

0.011 log point decline in their median earnings growth in response to a one-standard deviation

increase in innovation by competing firms. Importantly, the distribution of earnings growth rates

becomes more left-skewed as substantial earnings drops become more likely: the 10th and 5th

percentile decrease by approximately 0.033 and 0.042 log points, respectively. These magnitudes are

substantial, given that the unconditional 10th and 5th percentiles of cumulative earnings growth

rates are -0.53 and -0.88 log points, respectively. Importantly, Appendix Figure A.4 shows these

magnitudes do not substantially change across horizons of 3 to 10 years, suggesting that the effects

we document represent rather permanent changes in the level of worker earnings.

In sum, we see that own-firm innovation is followed by improved outcomes for the firm’s workers,

whereas innovation by competing firms is associated with unambiguously worse future outcomes for

these workers. To the extent that workers are risk averse, and shifts in the distribution of labor

income growth represent a source of risk that they cannot diversify away, taking into account these

higher-order changes in the distribution of earnings growth rates can have quantitatively different

implications for the value of human capital than a pure shift in mean growth rates.

To quantify the magnitude of these estimates, we next compute the shift in the worker’s utility

(certainty equivalent) in response to a one-standard deviation shock in innovative output, by either

the firm or its competitors. In order to do so, we need to make some assumptions. First, we

assume that workers have power utility. Second, we assume that the pass-through coefficient from

labor income to consumption is equal to one; lower pass-through coefficients would have the same

qualitative effect as lowering risk aversion.7 Third, to avoid extrapolating the distribution into the

left tail, which will have first-order implications on worker utility, we assume that the distribution of

worker earnings is characterized by 7-point distribution corresponding to the estimated percentiles.

This approximation leads to more conservative estimates of utility losses, since it truncates the most

extreme outcomes in the left tail (we use a more elaborate interpolation scheme in section 6 below).

We find that, even though these shifts in the distribution of future growth rates might seem

modest, they have a quantitatively significant impact on worker utility. Specifically, a worker with a

relative risk aversion coefficient of 5 will experience a 3.4% reduction in her utility (in certainty

equivalent terms) in response to a one-standard deviation shock to innovation by competing firms—

7Suppose that the elasticity of an individual worker’s consumption to a permanent change in income is a constant
θ ∈ (0, 1). For an agent with a CRRA coefficient of γ, her certainty equivalent over this consumption lottery is
equivalent to the certainty equivalent over the income lottery of an agent with a coefficient of risk aversion equal to
γ̃ = 1 + (γ − 1)θ.
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compared to a 1.1% reduction for a risk-neutral worker. These estimates are of the same order of

magnitude than the welfare cost of business cycles due to job displacement computed by Krebs

(2007). Similarly, a risk averse worker experiences a lower increase in her certainty equivalent

following a one-standard deviation increase in firm innovation (0.5%), compared to a risk-neutral

worker (1.3%).

3.5 Conditioning on Worker Income

A natural question is whether the effects documented above represent truly unpredictable changes

in future worker earnings growth rates, or simply reflect the incomplete information of the econo-

metrician. For instance, one possibility is that new innovations are complementary to the effort of

high-skill workers, while being a substitute for low-skill workers. The increase in dispersion of future

labor income growth rates we document may simply reflect an increase in the skill premium—and

therefore the estimated changes in distributions may not reflect risk, but rather heterogeneous

exposures across groups. Though worker skill is not observable in our data, we may expect that

conditioning on workers’ past earnings as a proxy for skill, might reduce the degree of dispersion in

ex-post outcomes documented in Table 1.

Alternatively, we may expect the magnitude of the displacement effect to be larger for top

workers, since they have the most to lose. Specifically, such is the case in the simple model in

Section 1, which implies that the magnitude of the increases in the left tail should be larger for high

income workers.

Here, we exploit these ideas further by estimating specifications similar to (12), except that we

now allow the response coefficients to firm (ah) and competitor (bh) innovation to vary with the

worker’s current earnings rank within the firm. Following Guvenen et al. (2014), we compute worker

earnings ranks based on the last 5 years of earnings—that is, using wt−4,t, defined in equation (7).8

Whenever we allow a1 and a2 to vary across groups, we also include indicator variables for each

group within the specification. Also recall that, to ensure that we are not capturing the effects of

mean-reversion in worker levels following a transitory shock (for instance, a bonus), we also allow

the coefficients on lagged income growth rates gi,t−3:t to vary across firm rank bins.9

Figure 4 shows that conditioning on the level of worker earnings reveals greater heterogeneity

in ex-post worker outcomes. Specifically, we see that the income growth rates of top-paid workers

exhibit a substantial increase in dispersion (and skewness) in response to innovation than the income

growth rates of lower-paid workers. Examining the top panel of Figure 4, we see that workers in the

top 5 % and bottom 95% experience qualitatively similar increases in skewness in income growth

8As a robustness check, we also repeat our analysis by conditioning on the worker’s salary rank within the
industry—defined at the SIC3 level. All of our main results are similar (see Appendix Figures A.17 to A.19 for details).

9The astute reader will note that, given our 10% sampling rate and restriction to men only, some firm-years may
not be associated with many worker observations, in which case workers’ percentile ranks are not measured very
precisely for small firms. To check that the potential classification errors are not driving our results, we verified that
our main results hold when we drop from the estimation sample any firm-years with fewer than 20 matched workers.
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rates in response to firm innovation, but the magnitudes are substantially different. For example,

a one-standard deviation increase in Af,t is followed by a 5 percentage point increase in the 95th

percentile of their earnings growth rate for workers in the top 5% of the distribution, but only a 2.1

to 3.6 percentage point increase for workers in the bottom 95%.

Further, workers at or above the top 5th percentile also experience a significant increase in the

left tail of income growth rates following innovation by their own firm—unlike workers in the bottom

95%. This increase in the left tail dominates the location shift (increase in the median), implying

that the 5th and 10th percentile of income growth rates actually decline for these workers. Put

differently, following a higher innovative output by their own firm, highly-paid workers experience an

increase in the likelihood of both large earnings gains, but also large income drops. As a result, the

impact of firm innovation on worker utility is theoretically ambiguous; it depends on risk aversion.

Specifically, a top-paid worker with a risk aversion of 5 experiences a 0.9% drop in her certainty

equivalent following a one-standard deviation increase in Af , compared to a 2.5% increase for a

risk-neutral worker.

Highly-paid workers are also more likely to experience large income drops following higher

innovation output by competing firms. Examining the bottom panel of Figure 4, we see that

workers at the top 25th percent experience a dramatic increase in the left-skewness of their earnings

distribution compared to workers in the bottom 75th percentile.10 For instance, a one-standard

deviation increase in AI\f,t is associated with a 14 percentage point decline in the 5th percentile of

earnings growth for the top 5% of workers—compared to just a 1.1 2.7 percentage point fall for the

workers in the bottom 75th percentile. These magnitudes imply substantial utility losses following

innovation by competing firms; a worker with a risk aversion coefficient of 5 experiences a 11% drop

in her certainty equivalent in response to a one-standard deviation increase in AI\f,t, compared to a

2.6% drop for a risk-neutral worker.

This increased sensitivity of the earnings growth of the left tail of top workers to competitor

innovation is qualitatively consistent with the simple model we outline in Section 1. In the model,

top workers experience a higher proportional loss to their income when entering unemployment,

which gives rise to an increased sensitivity of the left tail, especially for workers who leave the firm.

In the next section, we examine the relation between innovation and worker exit in more detail.

4 Innovation and Worker Exit

Our results so far show that the distribution of worker earnings growth becomes more left-skewed

following increases in the rate of innovation by competing firms. The simple model in Section 1

replicates these results through worker separations. Here, we explore the extent to which the

increased likelihood of job loss helps to account for these patterns in the data.

10We report OLS coefficients from the same specifications in Panel A of Appendix Figure A.4.
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A priori, we might expect that the likelihood of job loss accounts for most of the increase in

the left tail in the data. In particular, the labor economics literature has documented that workers

often experience substantial declines in earnings upon job separation (see, e.g., Jacobson, LaLonde,

and Sullivan, 1993). Indeed, the same pattern holds in our data. Appendix Figure A.5 compares

the distribution of earnings growth across all workers (Panel A) to those workers that remain with

the same firm over the next years (Panel B) and those workers that do not (Panel C). Comparing

across Panels B and C, we see that, in terms of the right tail (positive outcomes), the distribution

of earnings growth looks similar across these two groups. By contrast, the left tail is substantially

fatter (lower percentiles are more negative) for workers that move out of the firm relative to workers

that remain with the firm. These differences are economically substantial: the magnitude of the 5th

and 10th percentile is two to four times larger in absolute terms across all income levels for workers

that move relative to those that do not.

To shed light on these issues, we next draw a distinction between workers that remain with the

firm (stayers) versus those that leave (move). We then explore the extent to which the likelihood of

job separation, as well as the distribution of future earnings growth conditional on job status, varies

with firm innovation. Specifically, we decompose the conditional distribution of earnings growth g

conditional on innovation A = {Af , AI\f} into distributions that depend on whether the worker has

exited the firm (M = 1) or not (M = 0), and the probability of exit p(M |A),

f(g|A) = f(g|A,M = 1) p(M = 1|A) + f(g|A,M = 0) (1− p(M = 1|A)) . (13)

Since our data allow us to track workers across firms, we can estimate the individual components

of equation (13) separately. This decomposition allows us to understand the economic drivers of

the results in Figure 4—specifically, what drives the increase in the likelihood of extreme income

drops in response to innovation outcomes. That is, the fact that some workers experience a higher

likelihood of large income declines in response to (firm or competitor) outcomes could be purely

driven by an increased likelihood of job separation. This possibility would suggest that firm-specific

human capital is important. However, it is also possible that there also exists variation in worker

future outcomes conditional on mobility, which would be consistent with displacement in general

worker skills (e.g., a change in a worker’s outside option).

4.1 Innovation and likelihood of worker exit

We begin by estimating the likelihood p(M = 1|A) that a given worker remains with the same firm

over the next 3 years, as a function of firm Af and competitor AI\f innovation. We do so by using

a linear probability model,

Mi,t:t+3 = ahAf,t + bhAI\f,t + ch Zi,t + εi,t. (14)
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The left hand side variable Mi,t:t+3 takes the value 1 if employee i has a different main employer or

is unemployed at t+ 3. Given our focus on 5-year income earnings changes, this choice of timing

allows both for delayed mobility effects while also including the worker’s earnings subsequent to

exiting the firm. Using a linear model allows us to saturate the specification with the same rich set

of worker- and firm-level controls Z as equation (12).

Panel A of Table 2 shows that innovative firms are more likely to retain their workers. By

contrast, firms that do not innovate, while their competitors do, are more likely to lose workers at

the higher end of the distribution of wages (that is, above the median). Workers at the bottom of

the wage distribution are less likely to leave in response to innovation by competitors. In terms of

magnitudes, a one-standard deviation increase in Af is associated with a 1.7 to 2 percentage point

lower probability that a worker leaves the firm, and the magnitudes are largely comparable across

worker income levels. Conversely, a one-standard deviation increase in AI\f is associated with a 1.8

to 4.3 percentage point higher likelihood of exit. The point estimates are larger for the workers in

the top 5%, but the differences are not statistically significant. These magnitudes are substantial

given that the unconditional probability that a worker leaves the firm after 3 years is 36%.

These results are largely in line with the predictions of the model in Section 1, especially when

we interpret the model as applying to skilled workers. Our results are consistent with low-skill

workers having fewer firm-specific skills and therefore being more easily redeployable across firms.

4.2 Innovation and earnings growth conditional on mobility

Next, we examine whether innovation is related to the distribution of future earnings growth condi-

tional on mobility—that is, f(g|A,M) in equation (13). To estimate these conditional distributions,

we estimate equation (12) separately for workers that move (movers) versus those that do not

(stayers). Thus, for example, f(g|A,M = 1) is estimated by comparing future outcomes of workers

that left the firm during periods of high innovation with outcomes for workers that left following

periods of low innovation. Indeed, Figure 5 shows that the two distributions f(g|A,M = 1) and

f(g|A,M = 0) are qualitatively different.

The first row of Figure 5 shows that higher innovation by the firm Af is associated with an

increased likelihood of substantial income declines only for exiting workers. Continuing workers

experience no such increase in the left tail. The increase in the left tail among exiting workers is

quantitatively larger for the highest earners, but is present across all income groups. By contrast, the

response of the right tail of earnings growth—the likelihood of large earnings gains—is comparable

across movers and stayers. Naturally, one interpretation of these results is that they reflect adverse

selection. Specifically workers that are terminated following good shocks to the firm are more likely

to be adversely selected, and therefore face worse future labor market outcomes.11

11If that is the case, we would expect to see this pattern more generally subsequent to positive firm profitability
shocks. However, that does not seem to be the case. Appendix Figure A.6 shows that workers that left the firm
following periods of high firm/industry stock returns do not experience more negatively-skewed income growth than
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The bottom row Figure 5 shows that innovation by competing firms AI\f is associated with an

increased likelihood of large income declines for both continuing and exiting workers. However, the

magnitude of the increase in the left tail is larger by a factor of two to three for exiting workers. As

before, the magnitude of these effects are in general higher for more highly paid workers. Appendix

Table A.6, Panel A illustrates that the same pattern is true for conditional mean (OLS) effects.

In sum, innovation is associated with variation in worker outcomes conditional on exiting the

firm. By contrast, in the model in Section 1, once workers exit the firm they are all identical, that

is, there is no persistent loss in skill. The fact that in the data workers that left the firm following

periods of high innovation (by its competitors) fare worse relative to workers that left following

periods of low innovation suggests a more persistent impact on the workers’ human capital beyond

the loss of firm-specific skills upon separation. We discuss this further in Section 7.

4.3 Innovation and long-term unemployment

So far, we saw that exiting workers experience a substantially more negatively-skewed distribution

of earnings growth in response to innovation outcomes than continuing workers. The next step is

to understand the extent to which this increased likelihood of large earnings losses are driven by

longer unemployment spells or lower earnings in a new firm.

We construct a measure of long-term unemployment based on the number of years with zero

W-2 earnings.12 Specifically, Ui,t:t+5 counts the number of years between t+ 1 and t+ 5 that worker

i has reported zero total earnings in her W-2 form, conditional on having left the firm she was

working by time t+ 3. Table A.1 shows the distribution of Ui,t:t+5. We see that most exiting workers

experience no years with zero W-2 earnings. However, there is considerable variation in the tails.

Approximately 10% of exiting workers experience unemployment spells of at least a year; at least

5% of exiting workers experience unemployment spells of at least 3 years.

We estimate the following linear specification for our long-term unemployment measure,

Ui,t:t+5 = ahAf,t + bhAI\f,t + ch Zi,t + εi,t. (15)

The vector of controls Z contains the same worker- and firm-level controls as equation (12). Panel

B of Table 2 presents the results.

We find that workers that leave the firm subsequent to high innovation outcomes (either by the

firm or its competitors) experience on average longer unemployment spells—as measured by years

of zero reported earnings. The magnitudes are sizable: a one-standard deviation increase in Af,t

workers that left the firm during periods of low stock returns. Likewise, Appendix Table A.6, Panel B reports OLS
coefficients from the same specifications, which feature similar coefficients for competitor stock returns for both
switchers and stayers.

12Measuring directly the length of unemployment spells is not possible in our data, since we do not observe any
information on unemployment benefits. Also, note that since we exclude workers that have self-employment income
in our analysis (following Guvenen et al., 2014), workers with zero W-2 earnings are not workers who switch to self
employment.
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is associated with 0.006 to 0.031 increase in number of years with zero W-2 earnings. Similarly, a

one-standard deviation increase in competitor innovation is associated with up to a 0.038 percentage

point increase in the number of years without employment; again, the magnitudes are larger for

the highest-paid workers. Given that the mean number of years with zero earnings experienced

by exiting workers is approximately equal to 0.33, these are economically significant magnitudes.

Further, we see that the magnitudes are substantially larger for workers in the top of the earnings

distribution versus the bottom.

Our results in this section shed some light on the patterns in Figure 5. Specifically, they suggest

that part of the large increase in the left tail for movers following innovation outcomes we document

in Figure 5 are the result of longer unemployment spells. To explore this possibility, we re-estimate

the model but now excluding workers that experience any years with zero W-2 income between t+ 1

and t+ 5. Figure A.20 in the Appendix shows the results. Indeed, we find that extended periods of

unemployment account for a significant fraction of the increase in the left tail following innovation

outcomes. Once workers experiencing years with zero W-2 income are excluded, the increase in

the left tail is still present—though significantly smaller in magnitude, especially in response to

innovation by one’s own firm.

A potential concern is that the measure of long-term unemployment is indirect and could simply

reflect the choice to take time off work. As a more direct measure of structural unemployment,

we examine worker applications for Social Security Disability Insurance (DI) benefits. One view

of disability insurance is that it represents a long-term exit from the workforce, since benefits are

guaranteed until medical recovery, death, or retirement at age 65 (Autor and Duggan, 2003, 2006).

A potential rationale for a correlation between DI filings and our innovation measures is that some

workers may satisfy medical criteria making them eligible to apply for DI, but may choose to work

if opportunities in the labor market are sufficiently attractive.13 If innovation displaces the human

capital of some of these workers, we would therefore expect to see an increase in DI applications

following high innovation outcomes in case labor market opportunities become scarcer for these

workers.14 Indeed, this prediction is consistent with the administrative definition of disability, which

includes the ‘inability to engage in a substantial gainful activity.’

To explore this further, we examine DI applications as a separate outcome. The dependent

variable Di,t:t+5 now takes the value of one if the worker i is not longer employed in the same firm

she worked in at year t by the end of year t+ 3 and she has filed for disability insurance sometime

13Autor and Duggan (2003, 2006) term these workers ‘conditional applicants.’ Autor and Duggan discuss the
secular increase in the number of ‘conditional applicants’ since 1984, partly as a response in changes in determination
standards, but also more importantly, as changes in labor market conditions.

14The decision to accept transfer payments often involves exchanging a claim on a stream of (comparatively) risky
future labor earnings for a known, safe stream of transfers. The cost of participation is the opportunity cost of foregone
labor income, which changes in response to its riskiness. In the case of DI, some individuals who satisfy the medical
criteria to claim benefit may decide whether to apply based upon changes in labor market conditions. In our model,
one potential interpretation of the reservation wage bt is the expected utility of leaving the labor force and consuming
transfer income.
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between year t+ 1 and t+ 5. As we see in Table A.1, applying for disability insurance is not a rare

phenomenon, especially for exiting workers. Approximately 2.6% of workers apply for disability

insurance over a 5-year period. Among the sample of exiting workers, this fraction rises to 4.1%.

We estimate the following linear specification,

Di,t:t+5 = ahAf,t + bhAI\f,t + ch Zi,t + εi,t, (16)

using the same vector of controls Z contains the same variables as equation (12).

We find that skilled workers who exit following periods of high innovation—by the firm or its

competitors—are more likely to file for disability insurance relative to workers that exit following

periods of low innovation (see Panel C of Table 2). These effects are present for the top of the

distribution in terms of past worker earnings. Specifically, focusing on workers that are the top 75%

of the distribution in terms of past age-adjusted earnings, we see that an increase in firm innovation

is associated with an increase in disability applications among exiting workers. Conditional on exit,

workers in the top half of the within-firm earnings distribution are also more likely to file for DI

following periods of high innovation by competing firms. Interestingly, we see the opposite effect

for workers at the bottom of the earnings distribution. Such workers are less likely to file for DI,

conditional on exit, following high innovation outcomes by the firm. Focusing on workers in the

top half of the earnings distribution, a one-standard deviation in firm (competitor) innovation is

associated with a 0.06–0.09 (0.10–0.37) percentage point increase in the dependent variable.

Further, we also estimate specifications in which we do not restricting the sample to exiting

workers. Estimating equations (15) and (16) for all workers, regardless of whether they left the firm

or not, reveals whether innovation is unconditionally related to measures of long-term unemployment.

Appendix Table A.7 shows that this is indeed the case. For example, focusing on the workers

above the (firm) median earnings level, we see that a one-standard deviation increase in firm

(competitor) innovation is associated with a 0.004–0.011 (0.013–0.022) percentage point increase in

the number of years of zero W2 earnings (a sizable effect given a mean of 0.142). The likelihood

of DI applications shows a quantitatively similar increase. We interpret these facts as additional

evidence that innovation is linked with higher labor income risk, especially for the firm’s top workers.

In brief, we see that most workers that exit the firm following high innovation periods have

worse labor market outcomes than those who leave during low innovation periods—either by the

firm or its competitors. These effects are more pronounced for workers at the top of the distribution.

To some extent, these periods of unemployment help to explain the fattening of the left tail of the

distribution of income growth following periods of innovation.

5 Additional Results and Robustness

Here, we discuss a number of additional results and robustness checks.
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5.1 Process vs non-process

In our analysis so far, we have not differentiated among different types of innovation by the firm. In

the context of the model in Section 1, innovation by the firm can have a beneficial or displacive

impact on its own workers depending on whether it represents an improvement in product quality, or

an improvement in production methods. Our modelling assumption is that innovation in production

methods is more likely to lead to displacement for the firms’ own workers. Here, we explore this

idea more fully by distinguishing between process and non-process (e.g., product) innovation by the

firm. Process innovation consists of new production methods or procedures that help the firm lower

production costs (see, e.g., Link, 1982; Bena and Simintzi, 2019). By introducing new methods or

procedures in the production process, part of the worker’s human capital that was specific to the

previous ‘vintage’ may become obsolete.

We, therefore, estimate a modified version of equation (12) that decomposes innovation by the

own firm Af into process and non-process, and examines the impact of these two types of innovation

separately,

gi,t:t+h = a0 + apτ A
proc
f,t + aoτ A

other
f,t + bτ AI\f,t + cZi,t + εi,t. (17)

To decompose Af into process and product innovation, we use the data and classification procedure

of Bena and Simintzi (2019).15 Bena and Simintzi (2019) identify the fraction θj of claims of patent

j that can be identified with a process. The residual claims 1 − θj can refer to either types of

innovations, such as new products. We use these fractions to decompose the private value measure

Af into process and non-process innovations.16 Appendix B.4 contains more details.

We expect that a process patent is more likely to be associated with displacement for the firms’

own workers. Our findings are broadly consistent with this idea. The top row (Panels A and B)

of Figure 6 examines how the distribution of earnings growth varies across firms that engage in

process versus non-process innovation. Comparing Panels A and B, we see that the two types

of innovation have a qualitatively different effect on the distribution of worker earnings growth.

Product innovation is associated with earnings gains that are symmetric across workers, though

higher paid workers experience a greater increase. By contrast, process innovation is associated with

a substantial increase in the dispersion of earnings growth, in particular for the highest-paid workers.

For these workers, a one-standard deviation increase in Aprocf,t is associated with a 4.5 percentage

point decrease in the 5th percentile of income growth. In Appendix Figure A.7, we demonstrate that

these left tail effects for process innovation are considerably larger for workers who subsequently

leave the firm, whereas estimates for non-process innovations are fairly similar between movers and

15Bena and Simintzi (2019) use text-based analysis to identify patent claims that refer to process innovation. In
particular, they identify claims as process innovations as those which begin with “A method for” or “A process for”
(or minor variations of these two strings) followed by a verb (typically in gerund form), which directs to actions that
are to take place as part of the process.

16The correlation between Aprocf and Aotherf is approximately 70%. A similar decomposition of AI\f into process
and non-process is somewhat less informative because the resulting series have a correlation that is in excess of 90%.
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stayers.17 Complementing our results from section 4.3, Appendix Table A.8 illustrates that, holding

the total value of own firm innovation fixed, process innovation is much more predictive of long

term unemployment relative to other types of innovations.

The fact that process improvements are associated with an increased likelihood of large earnings

declines for the firm’s top workers might be surprising, if one has the view that process improvements

mostly displace low-skilled (and hence low-earning) workers. However, this need not be the case;

process innovations are often associated with significant organizational changes, and often lead

to the replacement of mid-level executives that lack the skills, or willingness, to adapt to new

production methods.18 That said, not all process innovations may be truly novel. In Appendix

Figures A.23 and A.24, we thus consider one alternative text-based measure of the extent to which

the innovation is novel to the firm. Specifically, we use the backward-similarity measure of Kelly,

Papanikolaou, Seru, and Taddy (2020) to further separate patents into two categories based on

whether the text is similar (‘less novel’) or fairly distinct (‘novel’) from prior patents received by the

firm. Analogous to changes in process innovation, we find that more novel innovations (especially

novel process innovations) by the firm are more likely to be associated with fattening of the left tail

for high income workers.

5.2 Robustness

The results in Figure A.2 suggest that our innovation measures do not pick up underlying, pre-

existing trends in firm-specific profitability. However, innovation could be related to a time-varying

unobservable firm characteristic that also drives profits. For instance, firms that hire ‘good’ executives

may decide to invest more in innovation and at the same time grow faster; such firms may also

have a different wage structure than firms with ‘bad’ managers. In the absence of a randomized

experiment that allows us to assign different innovation outcomes across different firms, we have

performed the following alternative estimation strategies. Specifically, we have expanded the set

17Appendix Figure A.11 repeats this exercise allowing for coefficients to vary with worker tenure as well as mobility.
We find that these left tail effects for high income workers are most pronounced for those with 3 or more years of
tenure with the firm, especially those who leave.

18For instance, one of the best-selling management texts (Davenport, 1993, p.194) on process innovation advocates:
[...]Interventions are needed to maximise gains and prevent backsliding [such as] replacing resisters and/or individuals
who have failed to adapt to the new environment. Leaders of successful process change replace resisters and those who
cannot adapt to the new environment only after providing education, training, and coaching, and allowing them ample
time to adapt. On discussing the implementation of process innovation in the Distributed Systems Manufacturing
(DCM) Group, which was a part of Digital Equipment Corporation (DEC): In 1985, the DSM team developed an
aggressive 5-year plan. A systems and information management-tools component called for the implementation of
computer-aided design, computer-integrated manufacturing, artificial intelligence, group technologies and other advanced
manufacturing systems, many of which had significant impacts on how people in the organization worked. (Davenport,
1993, pp.168-170). Indeed, our data support this view. During the 1986–1988 period, DEC engaged in significant
process innovation (according to our Aprocf measure, that put it at the top 10–25% for all firms engaging in (non-zero)
process innovation in each year. Further, these process improvements were also associated with substantial turnover of
mid-level managers: DSM’s group manager, like most successful process change leaders, used a combination of hard
and soft interventions to manage anticipated resistance. [...]But the group manager also displayed the impatience for
results that is characteristic of successful change leaders, and did not hesitate to replace resisters and others whom he
felt were not adapting quickly enough. (Davenport, 1993, p.195).
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of covariates that we include in the vector Z to include firm-level decision variables related to

innovation—specifically, controls for the ratio of R&D spending to book assets. When doing so, we

are essentially comparing firms that spend the same money on R&D, but have different innovation

outcomes. Figure A.15 in the Appendix shows that we find that controlling for R&D spending does

not really affect the magnitude of the estimated coefficients.

The results in Figure 4 suggest that, highly paid workers likely face substantially higher income

risk in response to innovation than lower-paid workers. However, a potential caveat with this

interpretation is that these results may be driven by differences in how employees exercise stock

options. Specifically, in contrast to other forms of compensation, the gains from stock option grants

appear in the worker’s W-2 form when these options are exercised by the employee, rather than when

they are granted to the worker. One possibility is that, for a given innovation outcome, the firm

always grants top employees the same amount of stock options. However, if these employees exercise

these options at different points in time, their capital gains will vary—and we may therefore see a

greater dispersion in their ex-post income growth rates. Though this may indeed be a possibility,

our results suggest that it is unlikely to be a key driver of our findings. First, the increase in the

left tail seems to be driven by workers who leave the firm, rather than those who stay and likely

receive more option compensation. Second, the results are consistent when we focus on outcomes

that do not rely on option exercise gains—specifically, the number of years of zero earnings or the

likelihood of applying for DI (Table 2). Third, as we discuss next, the fattening of the left tail that

we document in Figures 4 appears to be specific to innovation outcomes.

If the increase in the dispersion of earnings growth rates is due to differences in the timing that

options are exercised, we should see a similar pattern in response to shocks to firm profitability

more generally. We perform two sets of comparisons. First, we re-estimate equation (12), but now

replace the firm and competitor innovation measures (Af and AI\f ) with the firm’s own stock return

Rf , and the value-weighted stock return of the other firms in the same industry RI\f in that year.

Using stock returns instead of changes in realized profits has the advantage that it includes changes

in firm future profitability. Indeed, Vuolteenaho (2002) documents that most of the variation in

firm-level returns can be attributed to shocks to current and future profitability (‘cashflow news’).

Panels A and B Figure 7 presents the results. Second, we repeat this exercise where we instead

condition on realized profit growth over the next five years, both by the firm (Panel C) and its

competitors (Panel D). In the case of the firm, our measure is identical to the dependent variable

used in Figure A.2, and we aggregate competitor innovation analogously.

Contrasting Figure 7 to Figure 4, we see that the relation of the earnings of top workers

with innovation outcomes is qualitatively distinct than the relation with other sources of firm

profitability.19 In Panel A, we see that a positive shock to the firm’s stock price is associated

19We also present OLS coefficients in Appendix Table A.4 and compare them against comparable estimates for
innovation. Consistent with the argument in Kline et al. (2019), pass through coefficients for own firm innovation are
higher relative to those associated with stock returns or changes in profits. Appendix Table A.6 reports analogous
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with mostly a symmetric increase in worker earnings across the wage distribution. In Panel B, the

difference is even starker. Specifically, controlling for the firm’s own stock return, an increase in

the stock market valuation of competing firms is associated with a weakly positive effect on worker

earnings growth—in contrast to the increased likelihood of sharp income declines we saw in Figure 4.

This comparison suggests that differences in the timing of employee stock options are unlikely to

be responsible for the increase in dispersion—and particularly, the left tail—of earnings growth

for top workers.20 Panels C and D paint a similar picture; notably, in panel D, we observe that

competitor profit growth is associated with fairly modest improvements in worker outcomes in the

left tail for low skill workers. Point estimates for the right tail of the distribution are small and

generally statistically insignificant. More generally, our interpretation of this comparison is that the

creative destruction aspect of innovation is an important source of differentiation from other shocks

to firm profitability (e.g., shocks to product demand) in how firm shocks impact employee earnings.

Last, another potential concern is that the higher left-tail sensitivity for higher income workers

is really picking up an age effect. That is, even though worker earnings are defined net of lifecycle

dummies—see equation (7)—this only adjusts for mean effects. Workers at the right tail of the

distribution in terms of wages could be older. Older workers can have higher exposure to innovation

if they are less able to adapt to new production methods. To explore this idea further, we estimate

equation (12) separately for workers of different age groups and income levels. Indeed, Appendix

Figure A.13 shows that younger workers fare somewhat better than older workers in response

to innovation outcomes by either the firm or its competitors. However, our main finding that

top workers are more exposed to innovation, especially in terms of the left tail of income growth,

continues to apply within age categories.21

6 Implications for Income Inequality

Several studies have documented a significant increase in earnings inequality over the last two

decades (Piketty and Saez, 2003). Importantly, much of the recent increase in earnings inequality

is a between-firm phenomenon (Song et al., 2019; Barth et al., 2016). To the extent that worker

earnings are related to firm profits and innovation is related to firm growth, a natural candidate

explanation for these patterns is changes in innovation patterns across firms. Indeed, we saw in

Figure 2 that innovation outcomes became much more disparate in the 1990s relative to the 1980s;

this is primarily a within-industry phenomenon that was partially reversed in the 2000s. Here,

estimates conditional on mobility for innovation and stock returns, respectively.
20Appendix Figure A.6 further confirms our conclusion: there is no analogous fattening of the left tail for workers

who move following periods with high firm stock returns.
21Likewise, we also allow for heterogeneous effects by prior earnings and tenure at the firm, where were split workers

into two categories based on whether they have 3 or more years of tenure (the median in the full sample) or 5 or more
years of tenure (the median in the matched sample of workers at public firms). Our results, which are presented in
Appendix Figures A.9 to A.12, continue to hold within tenure groups, and displacement effects are somewhat more
pronounced for higher tenure workers (especially those that move).
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we explore how these shifts in the distribution of firm innovation translate into changes in the

distribution of worker earnings levels. In general, the direction of the effect is ambiguous: we

may expect that an increase in the dispersion of innovation outcomes across firms leads to greater

inequality across workers; however, also recall that top earners display somewhat greater sensitivity

of earnings to firm or competitor innovation outcomes. The fact that top workers exhibit greater

sensitivity to competitor innovation that workers and the bottom of the earnings distribution could

lead to a drop in inequality in response to greater dispersion in innovation outcomes across firms—if

it turns out to be the case that the displacement effect of top workers is particularly strong.

We provide a quantitative answer to this question using the point estimates from our quantile

regressions. We briefly summarize the main steps of the procedure here; we relegate all details to

Appendix C.2. We begin with an individual’s earnings level measured over the prior 3 years—net

of age effects, specifically wit−2,t, the base rate for our growth rate construction in equation (8).

We then simulate a counterfactual earnings growth rate for each worker—conditional on income

levels using the point estimates from Section 3.5—under the assumption that all firms in the same

industry always innovate by the same amount. That is, we eliminate within-industry dispersion

in firm innovation outcomes at time t. Given these simulated growth rates and the initial level

of earnings wit−2,t, we compute average worker earnings levels over the next 5 years wit+1,t+5 for

each worker. Last, we compute the level of inequality in average worker earnings over the next five

years wit+1,t+5 under these counter-factual realizations for Af and AI\f at time t. By comparing

the actual levels of income inequality with these counterfactual levels, we can assess how disparities

in firm innovation contribute to worker earnings inequality at each point in time.

Figure 8 presents our findings. We examine separately inequality in the top (the 95/50 range)

and the bottom (the 50/5) range of the distribution in the left and right panels, respectively. We

plot both the realized change in income inequality (orange line) and the change that our estimates

attribute to changes in the distribution of innovation outcomes documented in Figure 2. Focusing

on Panel A, we see that our point estimates imply that the increase in dispersion in firm innovation

outcomes led to an acceleration of the growth in inequality at the top during the 1990–2000 period.

By contrast, the model assigns only a minor role to between-firm dispersion in generating changes

in inequality at the bottom of the income distribution. Examining Panels B and C, we see that

the increased dispersion in innovative outcomes significantly contributed to increased between-firm

income inequality at both the top and the bottom of the distribution. By contrast, it mostly

contributed to higher within-firm inequality at the top of the distribution (the 95/50). As we see in

the right figure of Panel C, within-firm inequality at the bottom is mostly driven by the economic

cycle.

In terms of magnitudes, our calculations imply that dispersion in firm innovation outcomes

accounts for most of the increase in inequality at the top during this period. In particular, our

simulations imply that if all firms in the same industry were innovating by the same amount, the
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increase in overall income inequality at the top would be 90% smaller than its realization; by

contrast, its effect on inequality at the bottom of the income distribution is much smaller (12%).

In terms of between-firm inequality, our simulations imply that eliminating firms dispersion in

innovation outcomes would have led to a 60% to 70% smaller increase in inequality at the top and

at the bottom of the distribution. Last, our results indicate that the increased dispersion in firm

innovation outcomes can account for 80% of the increase in within-firm inequality at the top, while

only 20% at the bottom.

In sum, we find that the asymmetry in innovation outcomes across firms in the 1990s potentially

contributed significantly to the observed rise in income inequality. That said, one potential source

of concern in interpreting these findings stems from the fact that Af,t is somewhat persistent over

time—its serial correlation is approximately 0.7. In this case, we may be worried that we are

overestimating the impact of a shock in a given year: our quantile regressions are not merely

picking up the effect of Af,t on wit+1,t+5, but also the effect of Af,t+1, Af,t+2 . . . etc. In this case,

summing up over the estimated effect of Af,t over time would tend to overestimate their overall

impact on inequality. We think this is a valid concern, but unlikely to significantly impact our

findings: focusing on average earnings over a period wit+1,t+5 overweighs the impact of Af,t relative

to Af,t+1 etc. Further, the fact that the point estimates of the response of wit+1,t+k on Af,t+1 are

essentially identical for k = 3 and k = 5 (see Figure A.4) suggests that our quantile regressions are

not excessively estimating the impact of Af,t on average worker earnings.

7 Discussion

The simple model we outlined in Section 1, captures many of the key features in the data. However,

it has little to say about the persistence of earnings losses as a result of innovation. The model is

essentially static in that workers’ displacement is summarized by (temporary) unemployment. There

is no impact of innovation on a workers’ ability to find another job. By contrast, several aspects

of our empirical analysis suggest a role for technology permanently displacing workers’ existing

skills. First, consider the variation in outcomes among exiting workers. Figure 5 and Table 2

show that workers that leave the firm following high innovation outcomes (by either the firm or its

competitors) experience worse outcomes in terms of the distribution of earnings growth and duration

of unemployment relative to workers that leave the firm during low innovation periods. Second,

worker earnings often respond to increases in innovation by competing firms in the industry, even if

these shifts are unrelated to firm profits. Specifically, Appendix Figures A.21 and A.22 show that

impactful (highly-cited) patenting activity by other firms is also related to worker earnings—even

though the link with firm profits is significantly weaker (Kogan et al., 2017). To account for these

effects the model would have to be modified to allow for vintage-specific human capital, as in the

models Chari and Hopenhayn (1991), Jovanovic (1998) and Violante (2002). Such a model is outside

the scope of this paper.
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Can our results be explained with alternative models that do not feature skill displacement?

A model of adverse selection (Gibbons and Katz, 1991) may potentially help interpret some—but

not all—of the facts we document. Specifically, the fact that competitor innovation has an adverse

effect on worker outcomes (Figure 4) may simply reflect the fact that the firm reduces overall

employment as a result (Table 1); if the firm knows more about the worker’s skill than the labor

market, being fired is a negative signal about worker ability, and would therefore lead to perhaps

longer unemployment spells or a reduction in her wage in a new firm. However, for adverse selection

to explain the contrast between Figure 4 and Figure 7, it has to be the case that innovation is
somehow different than other shocks which affect the firm. One possibility is that when a firm

innovates, it somehow reveals information about its current workers (e.g., about some new dimension

of skill that was previously unused) that leads to permanent differences in earnings ex-post. If other

firms in the same industry use the same technology, terminating a worker will signal to the other

firms that he lacks skills that have become relevant.

8 Conclusion

Our analysis reveals several new facts regarding how the distribution of worker earnings growth

changes following technological improvements by firms (and their competitors). In general, we find that 
innovation by the firm is associated with higher worker earnings, though the gains are asymmetrically

distributed. By contrast, innovation by competing firms is associated with mostly lower worker

earnings, and, more importantly, an increase in the likelihood of large income declines. We draw

two broad conclusions from our findings.

First, workers at the top of the earnings distribution display substantially higher sensitivity to
either firm or competitor innovation outcomes, suggesting that these workers bear significant labor

income risk, a point emphasized by Parker and Vissing-Jorgensen (2009) and Guvenen et al. (2014),

among others. The fact that innovation is typically associated with an increased possibility of

substantial earnings loss for these workers represents a source of risk that cannot be easily diversified.

Workers may require higher wages, or alter their portfolio composition in response. Second, our

simulations are consistent with innovation playing a significant role in driving the increase in

income inequality during the 1990s. Importantly, the main effect appears to have been not the

increase in the level of aggregate innovative activity during this period, but rather the fact that this

increased amount of innovation was concentrated on a small subset of firms.

By linking detailed information about technological advances of firms and their competitors with

administrative earnings data, our analysis helps to deepen our understanding of the fundamental

drivers of individual-level income dynamics. These estimates inform policy and welfare analysis for

several reasons. First, changes in earnings risk immediately directly affect projections of the fiscal

impact of a variety of government programs. For instance, Social Security and Medicare revenues

and future payments depend nonlinearly on earnings; so a fiscal assessment requires a full estimate of
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the distribution of earnings and its evolution over time. Second, changes in expected future earnings 
levels and risk can change incentives for individuals to claim program benefits. To this end, we find 
that the same groups of workers whose earnings risk appears to increase following new technological 
developments are also more likely to apply for Social Security Disability Insurance benefits, which 
is consistent with the “conditional applicants” hypothesis of Autor and Duggan (2003). Finally, the 
optimal design of social insurance programs, including public pension, unemployment insurance, 
and disability benefits, critically depends on the quantity and fundamental sources of uninsurable 
income risk.
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Tables and Figures

Table 1: Innovation, firm profitability and worker earnings

A. Firm Profitability B. Worker Earnings

Horizon (years) (3) (5) (10) (3) (5) (10) (5)

All Workers Stayers Movers

Firm Innovation, 6.81 7.99 8.82 1.38 1.38 1.07 1.56 0.03
market value (Asmf ) (8.71) (7.39) (6.17) (15.46) (11.33) (10.01) (11.80) (0.28)

Implied Elasticity 0.203 0.173 0.121 0.195 0.004

Competitor Innovation, -3.94 -4.93 -5.99 -1.45 -1.88 -2.28 -1.46 -2.21
market value (AsmI\f ) (-7.85) (-7.81) (-5.19) (-5.42) (-8.45) (-9.27) (-5.85) (-7.91)

Implied Elasticity 0.368 0.381 0.381 0.296 0.448

R2 0.197 0.220 0.233 0.045 0.050 0.054 0.122 0.079

Note: Table reports the relation between firm innovation, firm profitability and worker earnings, specifically point
estimates of equation (11) and (12) in the main text. The table relates firm profitability and worker earnings to
innovation by the firm (Af , defined in equation (9) and the innovation by the firm’s competitors (AI\f , the average
innovation of other firms in the same SIC3 industry, see equation (10)). For the firm-level regressions (Panel A),
controls include one lag of the dependent variable, log values of firm capital, employment, and the firm’s idiosyncratic
volatility, and industry (I) and time (T) fixed effects. All firm-level variables are winsorized at the 1% level using
annual breakpoints. Standard errors are clustered by firm and year. All right-hand side variables are scaled to unit
standard deviation. The worker-level regressions (Panel B) use the specification described in equation (12), using the
same weighting and block-subsampling inference procedure as the quantile regression specifications. The last two
columns estimate (12) at the worker level using the subsample of stayers and movers, where movers are defined as
workers who leave the firm within the next three years. Please see the main text for further details.
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Table 2: Innovation, mobility, and long-term unemployment

A. Indicator for leaving the firm within 3 yrs (×100)

Innovation
Worker wage rank

[0,25] [25,50] [50,75] [75,95] [95,100]

Innovation by the firm, Af -1.91 -1.74 -1.74 -1.70 -1.46
(-14.65) (-13.63) (-13.13) (-12.80) (-9.56)

Innovation by competitors, AI\f -1.09 -0.20 0.42 1.11 1.13

(-4.22) (-0.79) (1.67) (4.33) (4.03)

B. Number of years unemployed (×100), 5yr horizon
(conditional on having left firm within 3 yrs)

Innovation
Worker wage rank

[0,25] [25,50] [50,75] [75,95] [95,100]

Innovation by the firm, Af 0.62 1.72 1.48 1.86 3.07
(2.93) (8.46) (7.58) (6.31) (6.72)

Innovation by competitors, AI\f -0.44 1.24 2.92 3.87 3.83

(-1.28) (4.33) (10.20) (10.78) (8.04)

C. Application for disability insurance (DI) indicator (×100), 5yr horizon
(conditional on having left firm within 3 yrs)

Innovation
Worker earnings rank

[0,25] [25,50] [50,75] [75,95] [95,100]

Innovation by the firm, Af -0.05 0.06 0.06 0.07 0.09
(-1.73) (2.51) (3.72) (5.22) (5.02)

Innovation by competitors, AI\f -0.37 -0.16 0.10 0.32 0.37

(-6.14) (-3.40) (2.54) (8.15) (6.87)

Note: Panel A reports point estimates of OLS regressions of equation (14) in the paper. The dependent variable is a
dummy (×100) which equals 1 if, at t+ 3, a worker is no longer employed at the same firm as at time t. Panel B
reports OLS estimates of equation (15) in the paper. The dependent variable is a count of the number of years of
zero W2 earnings worker i has experienced between years t+ 1 and t+ 5 (×100), conditional on having left the firm
by year t + 3. Panel C reports estimates of equation (16) in the paper. The dependent variable is a dummy that
takes the value of 1 if worker i has applied for disability insurance at any point between years t+ 1 and t+ 5 (×100),
conditional on having left the firm by year t + 3. In all cases, we allow the response of the dependent variable to
innovation (by the firm Af or its competitors AI\f ) to vary based on the worker’s earnings rank, which are defined
net of deterministic life-cycle effects. The coefficients are standardized to a unit-standard deviation shock in the
independent variable. Standard errors, in parentheses, are clustered at the firm level.
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Figure 1: Model: Response to an increase in the rate of innovation

A. Firm profits (solid) and employment (dashed)

Response to own firm innovation rate (λf,t) Response to competitor innovation rate (λf ′,t)
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B. Shifts in the distribution of wage growth
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Note: The left figure of Panel A plots the response of firm profits (solid line) and employment (dashed line) to a
positive shock to the rate of firm innovation, λf,t—a switch to λf,t = λH at time 0. The figure on the right plot
the corresponding response to a shock to the innovation rate of competing firms λf ′,t at time 0. Panel B plots the
response of the distribution of future earnings growth over the next year for workers that are currently employed at
firm f . The left figure plots the response to the firm’s own innovation (λf,t) while the right plots the response to
innovation by its competitor(λf ′,t). For each model simulation, we simulate a path for firm profits, employment and
worker earnings for t = −100 to t = 10. We simulate two firms f and f ′ and set the maximum number of product lines
(to be shared across these two firms) to 100. We set µ = 0.6; λL = 0.2; ψ = 0.5; h̄ = 1; λH = 2; χ = 0.25; and p = 0.8.
We set unemployment earnings bt to be equal to 75% of the minimum quality level across goods in the economy. The
model is simulated in continuous time (dt = 1/200) and then time-aggregated to annual observations. Analogous to
panel A, we compare various summary statistics – the 5th, 50th, and 90th percentiles, as well as the mean – of the
distribution of wage changes experienced by individual workers between a situation where λf,t (left panel) or λf ′,t
switches from λL to λH at t + dt versus a counterfactual in which the rate of innovation does not change. We do
this separately for workers with below- (blue columns) and above-median (orange columns) wages at the focal firm,
respectively. The outcome variable is the model analogue of the main outcome variable used in our empirical analysis:
the logarithmic growth rate of the next 5 years of workers’ earnings relative to the past 3 years of earnings.
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Figure 2: Firm Innovation during our sample period
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Note: Figure plots the distribution of firm innovation over time. We report results both for the entire sample as
well as for firm-year observations with non-zero values of innovation in a given year (that is, among innovative firms).
Panel A plots the aggregate level of innovation, defined as in Kogan et al. (2017):

∑
f

∑
j∈Pf,t

ξj/
∑
f Bft. In Panel

B, we report the cross-sectional mean of Af . Panel C plots the dispersion in firm innovative activity, defined as
the coefficient of variation in Af (that is, the ratio of the cross-sectional standard deviation (overall, between- and
within-industry) scaled by the mean of innovation Af in each year). Panel D plots the share of innovation (in terms of
patent market values ξj) that is accounted for by the top 1% of firms in each sample. Panels E and F report the
dispersion in the between- and within-industry component of Af , respectively. Industries are defined at the SIC3 level.
All series are in log deviations from their 1985 levels. 39



Figure 3: Earnings growth and firm innovation
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A. Own Firm Innovation: Average Marginal Effect
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B. Competitor Innovation: Average Marginal Effect
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C. Own Firm Innovation: Implied Change in CDF of Earnings Growth
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D. Competitor Innovation: Implied Change in CDF of Earnings Growth

Note: The top panel plots the average marginal effects of 5-year worker earnings growth in response to a one-standard deviation increase in firm and competitor
innovation that are implied by the quantile regression estimates (equation (12) in the main text) across different horizons. The units on the vertical axis correspond to
log points (times 100). The bottom panel plots the implied change in the cumulative distribution of worker earnings growth in response to firm and competitor
innovation: the black line denotes the unconditional distribution, and the red line denotes the distribution subsequent to a one-standard deviation shock.
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Figure 4: Earnings growth and innovation conditional on earnings levels

Colors indicate worker’s initial earnings rank within the firm:

( � [0,25] � [25,50] � [25,75] � [75,95] � [95,100] )
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B. Competitor Innovation

Note: Figure plots the average marginal effects of firm—and competitor—innovation that are implied by the quantile
regression estimates (equation (12) in the main text), where we allow for heterogenous coefficients for workers with
different earnings levels and estimates are scaled to correspond with a 1 standard deviation change in each variable of
interest. The worker earnings rank is defined net of deterministic life-cycle effects. We focus on 5-year growth rates.
The units on the vertical axis correspond to log points (times 100).
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Figure 5: Earnings growth and innovation: movers versus continuing workers

Colors indicate worker’s initial earnings rank within the firm: � [0,25] � [25,50] � [25,75] � [75,95] � [95,100]
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B. Own Firm Innovation: Movers
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C. Competitor Innovation: Stayers
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D. Competitor Innovation: Movers

Note: Figure plots the average marginal effects of firm—and competitor—innovation that are implied by the quantile regression estimates (equation (12) in the main
text) for workers with different earnings levels, where estimates are scaled to correspond with a 1 standard deviation change in each variable of interest. The equation
is estimated separately for workers that remain with the firm (stayers) versus workers that leave the firm (switchers). The worker earnings rank is defined net of
deterministic life-cycle effects. We focus on 5-year growth rates. The units on the vertical axis correspond to log points (times 100).
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Figure 6: Earnings growth and own firm innovation, process vs non-process

Colors indicate worker’s initial earnings rank within the firm:

( � [0,25] � [25,50] � [25,75] � [75,95] � [95,100] )
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B. Own Firm: Product Innovation

Note: Fgure plots the average marginal effects own firm process and non-process oriented innovations that are implied
by the quantile regression estimates (equation (12) in the main text) for workers with different earnings levels. The
worker earnings rank is defined net of deterministic life-cycle effects. We focus on 5-year growth rates. Coefficients are
scaled to correspond with a 1 unit standard deviation change in each of the independent variables. The units on the
vertical axis correspond to log points (times 100).
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Figure 7: Earnings growth and other firm/competitor outcomes: stock returns and profit growth

Colors indicate worker’s initial earnings rank within the firm: � [0,25] � [25,50] � [25,75] � [75,95] � [95,100]
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A. Response to Own-Firm 1-Year Stock Return
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B. Response to Competitor 1-Year Stock Return
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C. Response to Own Firm 5-Year Profit Growth
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D. Response to Competitor 5-Year Profit Growth

Note: The top panel of the figure plots the average marginal effects of firm—and competitor—stock returns that are implied by the quantile regression estimates
(analogous to equation (12) in the main text, except that we use own firm and competitor year t returns in place of the innovation measures) for workers with different
earnings levels, where own firm and competitor innovation measures are replaced by own firm and competitor stock returns in the same year. Estimates are scaled to
correspond with a 1 standard deviation change in each variable of interest. Bottom panel reports average marginal effects from an alternative specification where own
firm and competitor innovation are replaced with realized own firm and competitor cumulative profit growth over the next 5 years. The worker earnings rank is
defined net of deterministic life-cycle effects. We focus on 5-year growth rates. The units on the vertical axis correspond to log points (times 100).
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Figure 8: Changes in the Distribution of Worker EarningsFigure 11: Changes in the Distribution of Worker Earnings
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⌅ Realized Change ⌅ Model-implied change due to shift in distribution of firm innovation

Note: The figure relates recent trends in wage inequality to firm innovation through simulations of our quantile
regression model. We focus on two measures of earnings inequality—the 95–50 and the 50–5 spread in log earnings—
that capture the right and left tail. The orange line at time t corresponds to actual increase in inequality from time t
to t + 5 (divided by 5). The blue line uses the point estimates from the quantile regressions in Section 3.5 to estimate
the shifts in inequality in worker earnings that can be attributed to changes in inequality in innovation outcomes
across firms (see, e.g. Figure 2). Specifically, we first compute the counterfactual level of worker earnings inequality
that would obtain in a world in which all firms in the same industry innovated equally at a given point in time (we set
Af,t to equal its industry-year mean) using the actual worker-level residuals. The blue line at time t corresponds
to the change between time t and t + 5 in the di↵erence between realized inequality and the counterfactual, which
corresponds to the role of inequality in firm innovation outcomes at time t in generating inequality during that period.

50

Note: The figure relates recent trends in wage inequality to firm innovation through simulations of our quantile
regression model. We focus on two measures of earnings inequality—the 95–50 and the 50–5 spread in log earnings—
that capture the right and left tail. The orange line at time t corresponds to actual increase in inequality from time t
to t+ 5 (divided by 5). The blue line uses the point estimates from the quantile regressions in Section 3.5 to estimate
the shifts in inequality in worker earnings that can be attributed to changes in inequality in innovation outcomes
across firms (see, e.g. Figure 2). Specifically, we first compute the counterfactual level of worker earnings inequality
that would obtain in a world in which all firms in the same industry innovated equally at a given point in time (we set
Af,t to equal its industry-year mean) using the actual worker-level residuals. The blue line at time t corresponds
to the change between time t and t+ 5 in the difference between realized inequality and the counterfactual, which
corresponds to the role of inequality in firm innovation outcomes at time t in generating inequality during that period.
For additional details, see Appendix C.2.

45



A Analytical Derivations

Here, we briefly describe the derivation of the model. The demand for variety i can be obtained
from the optimization problem of the final-goods producer

max
{xi,t}

(∫ 1

0
xνi,t

)
−
∫ 1

0
pi,t xi,t, (A.1)

which yields the inverse demand curve as the first-order condition for good i,

pi,t = ν xν−1i,t .(pi,t
ν

) 1
ν−1

= xi,t
(A.2)

Next, consider the problem faced by the leading producer of good i. She can set a price such
that the firm with the next-best level of efficiency–denoted by q′–finds it unprofitable to produce.
That is, she sets a limit price equal to the second-best producer’s marginal cost,

pi,t =
Wt

q′i,t
, (A.3)

where W is the marginal cost of employing the fixed factor l. Hence, the leading firm produces an
amount equal to (

Wt

νq′i,t

) 1
ν−1

= xi,t. (A.4)

Hence, the flow profits to the leading producer are equal to

Πi,t =

(
pi,t −

Wt

qi,t

)
xi,t

= (κ− 1)
(κ
ν

) 1
ν−1

(
qi,t
Wt

) ν
1−ν

,

(A.5)

where κ ≡ qi,t/q
′
i,t > 1 is the efficiency gap. These profits include the payment to the skilled

worker/manager. Since she can only steal a fraction β if she diverts one unit of output, the solution
to this contracting problem is to give her a fraction β of the profits, in which case she is indifferent
between stealing versus not. Last, market clearing determines Wt

1 =

∫ 1

0
li,t di

Wt =
ν

κ

[∫ 1

0
q

ν
1−ν
i,t di

]1−ν
.

(A.6)

B Data Appendix

Here, we describe our data construction in more detail.
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B.1 SSA administrative earnings records

For our empirical analysis, we work with a 10% random sample of confidential, panel earnings
records for males which is drawn from the U.S. Social Security Administration (SSA)’s Master
Earnings File (MEF). The MEF includes annual earnings information which is top-coded at the
SSA annual contribution limit prior to 1978, and uncapped information on annual earnings from
1978-2013. Due to several potential measurement issues in the initial years following the transition
to uncapped earnings, we start our analysis in 1980 (see, e.g., Guvenen et al., 2014, for further
details).

Our main sample selection criteria and variable construction methods, unless otherwise stated,
closely follow Guvenen et al. (2014). Specifically, we exclude the self-employed and exclude worker-
years for individuals who have not had at least three out of the prior five years of earnings exceeding
a minimum threshold. The minimum earnings threshold is the amount one would earn working 20
hours per week for 13 weeks at the federal minimum wage. For an individual worker to appear in
the sample at time t, we require that she not receive self-employment earnings in excess of 10% of
total wage income or the above minimum earnings threshold in any of the years which are used to
construct either conditioning or dependent variables. All earnings are converted to 2010 dollars
using the personal consumption expenditure deflator. We restrict attention to workers who are
above the age of 25 at time t, and, when we calculate growth rates, we require that the worker has
at least one year with earnings above the threshold during which he is below the age of 60. Even
after applying these filters, the sample includes over 100 million worker-year observations.

In addition to total annual earnings, the MEF also includes detail on the Employer Identification
Number (EIN) and SIC codes of the three employers which were associated with the highest annual
earnings for each individual. This information allows us to link each worker-year earnings measure
with a particular firm and industry, and also to detect when workers switch employers. When an
individual receives income from more than one job in a given year, we associate her with the EIN of
the firm that pays the highest total wage, following Autor et al. (2014) and Song et al. (2019).

Using this mapping between workers and EINs, we also construct measures of an individual’s
tenure within the firm, which is the number of consecutive years for which the firm has been the
worker’s largest source of W-2 income. In addition, we construct measures of switches between
firms. For instance, we can compute the probability that a worker who is currently employed at
firm j at time t continues to be employed at the firm at time t+ h.

Following Guvenen et al. (2014), we estimate age dummy coefficients by regressing log wages
on age and cohort-specific effects in a random 10% sample of the data. We choose 25 year old
as the omitted base category, so the age dummy captures the average ratio of the log wage of an
older worker to a 25 year old over the sample period. D(agei,t) is obtained by exponentiating the
age dummies. At the very start of a worker’s income record, we only divide by dummy variables
associated with years after his first W-2 record above the minimum earnings threshold. For example,
if a worker who is 25 at time t had his first W-2 record above the minimum threshold in time t− 2,
then we only divide through by

∑2
j=0D(agei,t−j).

In addition to total annual earnings, the MEF also includes detail on the Employer Identification
Number (EIN) of the three employers which were associated with the highest annual earnings
for each individual. This information allows us to link each worker-year earnings measure with a
particular firm and industry, and also to detect when workers switch employers. Using this mapping
between workers and EINs, we also construct measures of an individual’s tenure within the firm,
which is the number of consecutive years for which the firm has been the worker’s largest source of
W-2 income.
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B.2 Constructing a Matched Sample of Public Firms

Next, we use the EIN numbers in the MEF to map the innovation measures–which are only available
for public firms–with individual workers’ earnings histories and to get a richer picture of how
the conditional distribution of workers’ income growth rates change with innovative output. For
instance, the EIN appears directly below the legal company name on the cover page of the annual
(10-K) and quarterly (10-Q) financial statements. Following standard practice, we exclude from the
analysis financial firms (SIC codes 6000-6799) and utilities (SIC codes 4900-4949), as well as firms
for which cannot find EINs, which leaves us with a sample of around 142 thousand firm-years over
the 1980-2013 period. While SIC code information is available in the MEF, we use the SIC code
information from their financial statements for our analysis.

We combine two data sources in order to match the firm identifier (GVKEY) from CRSP-
Compustat Merged (CCM) database to EINs to the MEF. First and foremost, EIN numbers of
publicly traded firms are readily available in their SEC filings, appearing on the front page of each
firm’s annual report (form 10-K). We can access both current and historical EIN information from
the company header files, which gives us a set of EINs which are associated with a given firm. In a
small number of cases, the same EIN can be associated with multiple firm identifiers (GVKEYs).
In the vast majority of cases, only one of the two records is active over a given date range, or one of
the two filers is a subsidiary of the other. In the latter case, we associate the EIN with the GVKEY
of the parent firm. In the small remainder of cases, we only keep the GVKEY-EIN mapping from
the current header file. However, the EIN from the 10-K may only be picking up a subset of the
total employee base for each of these firms, because many firms pay workers through multiple EINs.
For instance, Song et al. (2019) report that, according to Dun & Bradstreet data, the average firm
listed on the New York Stock Exchange is associated with 3.2 EINs. To this end, the gap between
the employment measure from firms’ 10-K (which also includes employment in other countries and
subsidiaries) and the number of W-2’s in the MEF tends to be largest in percentage terms for the
firms with the highest reported 10-K employment.

To improve our coverage of employment at firms with multiple EINs, we bring in an additional
source of information. We augment our existing list of GVKEY-EIN links with information from
firms’ form 5500 filings, which are publicly-available documents that report information about
firms’ benefit plans to comply with the Employee Retirement Income Security Act (ERISA).22 This
dataset provides a link between company identifying information (name, address, etc.) and EINs,
and includes approximately 600 thousand unique EIN numbers per year starting in 1999. Prior
to 1999, filings by firm plans with fewer than 100 participants are not included in the FOIA data,
so sample sizes are smaller. We can then link company names on form 5500 to a list of “major
subsidiaries” in Exhibit 21 which each firm is required to file on its annual report. Combining these
two sources allows us to associate a given GVKEY with additional EINs of firm subsidiaries and/or
other EINs associated with parent firms’ retirement plans. We are extremely grateful to Josh Rauh
and Irina Stefanescu for sharing a link file between the form 5500 data and CCM data which was
used in Rauh and Stefanescu (2009) and Rauh, Stefanescu, and Zeldes (2019), which we used as a
starting point for the empirical analysis.

Incorporating subsidiary information increases the size of our estimation sample by about 50%,
from 7.8 million to 11.4 million worker-years in our baseline estimation. However, we do note that
our main results appear unchanged if restrict the sample to using the EIN numbers from the current
header file only, which corresponds with the EIN a firm’s most recent 10-K.

22We access FOIA information for filings from 1999-present from the US Department of Labor’s website: https:

//www.dol.gov/agencies/ebsa/about-ebsa/our-activities/public-disclosure/foia/form-5500-datasets. In-
formation from 1990-1998 is taken from the Center for Retirement Research at Boston College University:
http://crr.bc.edu/data/form-5500-annual-reports/.
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Figure A.1, panel A, shows the number of public firms with EINs which are matched and
unmatched to W-2 records in the MEF by year. On average, matching rates are quite high. We can
find records in the MEF for about 84% of the public firm-years. That said, there is a core group of
around 650 firms that we cannot find per year, which causes overall matching rates decline to some
extent post-2000 due to a gradual decline in the total number of public firms. Figure A.1, panel B,
shows the number of matched and unmatched firms by major SIC industry group. We observe that
the industry composition of the two samples are broadly similar.

Table A.1 provides summary statistics for observations which meet our screening criteria for
being included in the estimation for the full sample and matched sample, respectively. We note
that employees at public firms are slightly older and earn about $16 thousand dollars more per year.
Workers at matched public firms have about a year of additional tenure on average, and are also more
likely to have tenure greater than or equal to 3 years relative to workers at non-matched firms. Recall
from our earlier discussion that the tenure measure is censored by the fact that our sample starts in
1980; therefore, these summary statistics provide a lower bound on the population distribution of
firm tenure. For this reason, our empirical specifications involving tenure will emphasize a binary
measure which is not subject to this downward bias.

Table A.3 compares the characteristics of matched and unmatched firms over our sample period.
Matched firms tend to be similar in terms of book assets, but larger in terms of employment (as
reported on 10-K forms). Given the discussion above about the fact that some firms may have
multiple EINs associated with different divisions and/or subsidiaries, such a result is to be expected.
Matched firms are also somewhat more innovative. The ratio of R&D to assets, as well as average
values of each of our three innovation measures–which we will describe in the next section–are all
higher for the sample of matched firms. For the sample of matched firms, we can also compute
a measure of total employment from the SSA data by counting up the total number of W-2’s
associated with each employer. The average firm in our matched sample has about 3,800 employees
according to this measure. On average, the SSA-implied employment measure is smaller than the
number reported in firms’ financial statements. This result is unsurprising given that the 10-K
number is more inclusive and the fact that some firms may pay employees through multiple EINs,
not all of which are found in the 5500 data.

B.3 Cumulative Earnings Growth and Transitory Shocks

When focusing on income changes, our main variable of interest will be the growth in age-adjusted
income wit,t+k over a horizon of h years, defined as follows:

Yi,t:t+h ≡ wit,t+h − wit−2,t. (A.7)

Here, we have chosen as our baseline the average (age-adjusted) earnings between t− 2 and t as
the scaling factor; that said, our results are similar if we extent the window to 5 years. Focusing
on the growth of average income over multiple horizons in (A.7) has two distinct advantages.
First, summing over multiple years yields a much smaller number of observations with zero income
relative to a simple comparison of year-on-year income changes. Second, and more importantly,
this transformation can smooth out some large changes in earnings that may be induced by large
transitory shocks, which places a higher emphasis on persistent earnings changes. See Appendix B.3
for more details.

To see the second point more clearly, suppose that annual log income, net of age effects, is the
sum of a random walk component ξi,t = ξi,t−1 + ηi,t plus an i.i.d transitory component εi,t. In our
benchmark specifications, we set h = 5; in this case, a log-linear approximation of our five year
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earnings measure Yi,t:t+h around zero is:

Yi,t:t+5 ≈ 1

5
ηi,t+5 +

2

5
ηi,t+4 +

3

5
ηi,t+3 +

4

5
ηi,t+2 + ηi,t+1 +

2

3
ηi,t +

1

3
ηi,t−1

+
1

5
[εi,t+5 + εi,t+4 + εi,t+3 + εi,t+2 + εi,t+1]−

1

3
[εi,t + εi,t−1 + εi,t−2]. (A.8)

That is, our transformation implicitly computes a weighted average over permanent and transitory
shocks of different periods. Our measure places a larger weight on the short-term permanent
shocks (e.g., on ηt+1) than in the long-term shocks (e.g., at ηt+5). More importantly, however, the
transitory shocks ε receive mostly a lower weight than the permanent shocks η, hence reducing
their importance. Last, given that our measure essentially is an equal-weighted average over the
transitory shocks, it is likely to be closer to a normal distribution if the underlying ε shocks are
non-normally distributed.

B.4 Measuring Innovation

Here, we summarize the main steps behind the construction of the innovation measure, and refer
the reader to Kogan et al. (2017) for additional details.

The Kogan et al. (2017) estimate of the economic value of patent j equals the estimate of the
stock return due to the value of the patent times the market capitalization M of the firm that is
issued patent j on the day prior to the announcement of the patent issuance:

ξj = (1− π̄)−1
1

Nj
E[vj |rj ] Mj . (A.9)

An important step in this construction is the estimation of the conditional expectation E[vj |rj ].
Kogan et al. (2017) allow for the possibility that the stock price of innovating firms may fluctuate du-
ring the announcement window for reasons unrelated to innovation, and hence include an adjustment
for measurement error that requires parametric assumptions. We follow their methodology closely.
Next, part of the value of the patent may already be incorporated into the stock price, hence (A.9)
includes an adjustment that is a function of the unconditional probability π̄ of a successful patent
application—which is approximately 56% in the 1991-2001 period (see, e.g., Carley, Hegde, and
Marco, 2014). Since this adjustment does not vary by patent, it has no impact on our analysis.
Last, if multiple patents Nj are issued to the same firm on the same day as patent j, we assign each
patent a fraction 1/Nj of the total value.

The next step involves aggregating (A.9) at the firm and industry level. To construct the
measure at the firm level, we sum up all the values of patents j ∈ Pf,t that were granted to firm f
in calendar year t,

ξsmf,t =
∑
j∈Pf,t

ξj . (A.10)

In addition to the measures of innovation based on stock market reactions (A.10), we also construct
a measure that weigh patents by their forward citations. Specifically, we measure the amount of
innovation by firm f in year t as

ξcwf,t =
∑
j∈Pf,t

1 + Cj
1 + C̄j

, (A.11)

where C̄j is the average number of forward citations received by the patents that belong in the same
technology class (as measured by 3-digit CPC codes) and were granted in the same year as patent j.
This scaling is used to adjust for citation truncation lags (Hall et al. (2005)) as well as differences in
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citation patents across technology classes. Both (A.10) and (A.11) are essentially weighted patent
counts; if firm f files no patents in year t, both variables are equal zero.

Large firms tend to file more patents. As a result, both measures of innovation above are strongly
increasing in firm size (Kogan et al., 2017). To ensure that fluctuations in size are not driving the
variation in innovative output, we scale the measure above by firm size. We use book assets as our
baseline case,

Akf,t =
ξkf,t
Bft

, k ∈ {sm, cw}. (A.12)

We note that our main results are not sensitive to using book assets for normalization since we also
control for various measures of firm size in all our specifications. Our main results are similar if we
scale by the firm’s market capitalization instead.

We also construct a measure of innovation by competing firms. We define the set of competing
firms as all firms in the same industry – defined at the SIC3 level– excluding firm f . We denote this
set by I \ f . We then measure innovation by competitors of firm f as the weighted average of the
innovative output of its competitors,

AkI\f,t =

∑
f ′∈I\f ξ

k
f ′,t∑

f ′∈I\f Bf ′t
, k ∈ {sm, cw}. (A.13)

To decompose the total value of innovation into these two types, we rely on the data and
classification procedure of Bena and Simintzi (2019). Bena and Simintzi (2019) use text-based
analysis to identify patent claims that refer to process innovation. In particular, they identify claims
as process innovations as those which begin with “A method for” or “A process for” (or minor
variations of these two strings) followed by a verb (typically in gerund form), which directs to actions
that are to take place as part of the process. Hence, once can identify the fraction θj of claims of
patent j that can be identified with a process. The residual claims 1− θj can refer to either types
of innovations, for example, new products. We use these fractions to decompose the private value
measure Af into process and non-process innovations; Appendix B.4 contains more details.

To construct Aprocf,t and Aotherf,t , we use a similar procedure as equations (A.10) and (A.12). We
create an estimate of the dollar amount of process innovation by the firm in year t as

ξprocf,t =
∑
j∈Pf,t

θj ξj , (A.14)

as well as the residual innovation ξotherf,t = ξf,t − ξprocf,t . Similar to equation (A.12), we scale both
measures by firm assets. In terms of magnitudes, the average fraction of the dollar value of firm
innovation that can be characterized as process, ξprocf,t /ξf,t, is approximately 27.5%.

C Methodology

Here, we relegate details of our estimation and simulation methodology.

C.1 Econometric Methodology

Quantile regression methods are semiparametric, allowing us to characterize features of conditional
distributions without needing to fully specify distributional assumptions. Just as OLS regression
methods estimate best linear projections of conditional expectation functions under misspecification,
linear quantile regression methods estimate a (weighted) linear approximation of the true unknown
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quantile function. See Angrist, Chernozhukov, and Fernández-Val (2006) for further details. In
contrast to alternative parametric methods for characterizing higher moments of non-Gaussian
distributions (e.g., fitting mixture models), quantile regression methods are highly computationally
tractable. We estimate the parameters of interest by solving a sequence of convex optimization
problems which converge quickly even with a large number of observations (14.6 million) and
conditioning variables (our baseline specification includes hundreds of regressors).

In our analysis, we use a method for estimating multiple conditional quantiles recently developed
in Schmidt and Zhu (2016). This method, which is a natural extension to the location-scale paradigm,
has the advantage of estimating conditional quantiles which are not susceptible to the well-known
quantile crossing problem. Furthermore, as we will show in the next section, it allows for a natural
interaction between aggregate and cross-sectional determinants of higher moments. In what follows,
we briefly describe the procedure, and refer the reader to Schmidt and Zhu (2016) for more details.

Let Yi,t be the dependent variable of interest, and Xi,t be a set of observable conditioning
variables. In our case, Yi,t will be the growth rate of labor income, cumulated over various horizons.
Let q(α;x) be the conditional quantile function of Yi,t, for each α ∈ (0, 1), satisfying

q(α;x) ≡ inf{y ∈ R : P [Yi,t ≤ y | Xi,t = x] ≥ α}. (A.15)

If we further assume that the distribution of Yi,t is absolutely continuous, then q(α;x) is a continuous,
strictly increasing function of α. Our interest will be in estimating a model for p conditional quantiles
associated with the probability indices α1, . . . , αp, and we will denote the jth conditional quantile of
interest by qj(x) = q(αj ;x). We assume throughout that αj∗ = 1

2 for j∗ ∈ {1, . . . , p}, so qj∗(x) is
the conditional median of Y |X = x.

Following Schmidt and Zhu (2016), we parameterize the conditional quantiles qj(x) by:

qj(x) =


x′β0 if j = j∗

x′β0 −
∑j∗−1

k=j exp(x′βk) if j < j∗

x′β0 +
∑j

k=j∗+1 exp(x′βk−1) if j > j∗
. (A.16)

The econometric model in (A.16) is a natural extension of the location-scale paradigm. All
quantiles are anchored to the conditional median of Y |X — which is denoted by qj∗(x). The
quantiles above the median are estimated by adding nonnegative functions (“quantile spacings”)
which are exponentially affine in the independent variables Xi,t, which ensures that all quantiles
will be properly ordered (e.g., the 75-th percentile will always be above the median).23

Our specification for multiple quantiles allows for considerable flexibility in higher moments
above and beyond the location-scale benchmark in the previous section. For instance, spacings
to the left of the median could be larger than spacings to the right of the median, which would
indicate a left-skewed distribution of shocks. Or, alternatively, some variables could have a larger
influence on more extreme spacings (such as the distance between the 10-th and 5-th percentile)
relative to spacings closer to the median (such as the distance between the median and the 25-th
percentile), generating variation in conditional kurtosis. Moreover, Schmidt and Zhu (2016) argue
that a multiplicatively separable functional form like (A.16) can be motivated by the nonparametric
extension of differences-in-differences estimation proposed by Athey and Imbens (2006).

The interpretation of an individual slope coefficient within one of the spacing functions is a

23Any sequence of conditional quantiles of an absolutely continuous random variable can be decomposed as a median
plus or minus a sequence of non-negative distances of quantiles. For computational tractability, we require that the
specification is linear in parameters. Schmidt and Zhu (2016) demonstrate how to estimate the model in (A.16) by
iteratively applying a sequence of standard linear-in-parameters quantile regressions, beginning with the median and
working toward the tails.
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semi-elasticity. In particular, for any j 6= j∗, we have that

βj =
∂

∂x
[log(qj+1(x)− qj(x))], (A.17)

which is the percentage change in the distance between two quantiles induced by a marginal change
in x. A positive slope coefficient in a spacing below the median (j < j∗) indicates that, all else
constant, increasing x increases downside risk, fattening the left tail. Positive coefficients in spacings
above the median are associated with a fattening of the right tail.

We present our main results in terms of the average marginal effect of the independent variables
x on a given quantile. These estimates incorporate the accumulated effect across quantiles. An
advantage of our estimation methodology is that it results in highly tractable forms for these average
marginal effects,

E

[
∂qj(Xi,t)

∂Xi,t

]
=


β0 if j = j∗

β0 −
∑j∗−1

k=j E[exp(X ′i,tβk)]βk if j < j∗

β0 +
∑j

k=j∗+1E[exp(X ′i,tβk−1)]βk if j > j∗
. (A.18)

To estimate these average marginal effects, we use the sample means as plug-in estimators of the
expectations. In some of our specifications, the particular coefficient of interest is an interaction
term of a categorical variable with some other continuous variable (e.g., innovation). In these cases,
we compute an average marginal effect for the subsample of workers within that category.

We compute standard errors using a block-resampling procedure that allows for persistence in
the error terms at the firm level. Schmidt and Zhu (2016) establish the consistency, asymptotic
normality, and consistency of a bootstrap inference procedure. For computational efficiency, we use
a subsampling procedure rather than the bootstrap, noting that subsampling methods are generally
valid under weaker conditions than the bootstrap. We estimate the variance-covariance matrix of the
unknown vector of parameters by randomly selecting 10% firms without replacement, then scaling
the variance-covariance matrix of the subsampled parameters appropriately using the asymptotic
rate of convergence of the (

√
N -consistent) estimator. We also stratify these firm subsamples by 10

size bins. We use 100 replications.
To circumvent the incidental parameter bias, we exclude very small industries from the analysis.

Specifically, we drop industries with less than 10,000 matched worker-year observations from the
estimation. We impose the same restriction in the OLS estimates in Table 1 for comparability with
later results.

C.2 Simulation Procedure

While our estimated model characterizes the distribution of income growth rates conditional on
innovation, we can simulate from the model to see what our estimated coefficients imply about the
evolution of inequality of income levels. To approximate the evolution of income inequality in levels,
we use the following procedure.

We begin with an individual’s log average residual earnings over the prior 3 years—the same
measure which is subtracted off to calculate our growth rate measure—and add to it a randomly
generated growth rate from the fitted quantile model. To do this, we interpolate between fitted
quantiles to construct a smooth, continuously differentiable quantile function using a flexible
parametric approach proposed in Schmidt and Zhu (2016). This approach allows us to efficiently
simulate from the estimated conditional quantile model. Specifically, we construct a mapping from a
set of 7 conditional quantiles to a smooth density function from f(y;q) ≡ f(y; q1, . . . , q7) : R→ R+

by jointly imposing several restrictions:
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1. To the left of q2, f(y, µl) corresponds with a normal density with location and scale parameters
chosen to match the conditional quantile restrictions: i.e., its cdf satisfies Φ(q1, µl, σl) = 0.05
and Φ(q2, µl, σl) = 0.1. Analogously, to the right of q6, it follows a normal density φ(y, µu, σu)
which satisfies Φ(q6, µu, σu) = 0.90 and Φ(q7, µu, σu) = 0.95.

2. Between q2 and q6, the CDF is a cubic spline with knots at {q2, ..., q6} which satisfies the
conditional quantile restrictions, is continuous, and has continuous first and second derivatives.
These restrictions can be cast as a linear system of equations which has an exact solution
given two additional restrictions on the behavior of the spline at the boundaries. We impose
that the CDF has a continuous first derivative (i.e., the implied density matches the normal
used in the tails).

3. If the spline from part 2 is not strictly monotonic, we linearly interpolate the CDF instead.

Since our CDF is strictly increasing by construction, it is also straightforward to compute the
quantile function Q(u;q) by inverting it.

Since the spline is defined using a system of (tridiagonal) linear equations, we can quickly and
efficiently solve jointly for the spline parameters for a large number of observations at once. Our
simulation exercise is performed as follows:

1. For each individual, using the observed values of income growth yit and covariates xit, compute
the CDF of person i’s income growth realization: ûit ≡ F (yit;q(xit, β̂)). ûit is the percentile
of the shock that person i received at time t according to our fitted quantile model.

2. Then, we compute the counterfactual income growth realization as ỹit ≡ Q(ûit;q(x̃it, β̂)),
where x̃it is a set of counterfactual variables. Note that ỹit = yit if x̃it = xit.

24

3. The counterfactual income level is computed by adding the lagged level to the simulated
income growth realization ỹit.

The simulated draws associated with the covariates from year t provide an estimate of the cross-
sectional distribution of average income from t + 1 through t + 5 implied by the baseline model
when we use the actual values of xit observed in the data.25 Other than some minor differences
in levels introduced by truncation of extreme growth rates in individual earnings26, our method
reproduces the empirical distribution of income levels at each period. The realized change line in
Figure 8 is computed by taking the log difference between the set of simulated income statistics in
year t relative to the the same statistic for year t− 5 times 100, expressed in annualized units (by
dividing by 5).

We then compare this realized change with an analogous set of simulations using the fitted
quantile functions that obtain when we change the firm and competitor innovation measures, holding
all other individual and firm-specific variables fixed. By comparing the simulated level of inequality
obtained from these alternative scenarios with the baseline specification, we obtain a model-implied
decomposition of the potential contribution of innovation in year t to inequality, relative to this

24To minimize the influence of outliers and avoid numerical instabilities related to evaluating inverse functions, we
truncate ûit to the [0.0005,0.9995] interval. Therefore, the simulated draws exhibit slightly less dispersion relative to
the original data. We use the same adjustment for both “actual” and counterfactual series, which still allows for an
apples-to-apples comparison.

25In an earlier draft, we simulated draws from our estimated model for income growth rates by drawing a sample of
i.i.d uniform random variables, then evaluate the interpolated quantile function at these points. While results were
similar, our current approach has the advantage of maintaining the correlation structure of income realizations across
workers at each point in time.

26We verify that growth rates associated with the truncated series and raw sample moments are essentially identical.
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alternative scenario. Such a calculation is similar in spirit to the decomposition exercises of Machado
and Mata (2005) and Firpo, Fortin, and Lemieux (2011), which seek to quantify the predicted effect
of changes in the distribution of explanatory variables on quantiles of the unconditional distribution
of an outcome variable. While these decompositions do not necessarily have a causal interpretation,
they help to shed light on the magnitudes associated with our estimated coefficients.

We compare the simulated levels of earnings inequality implied by the observed distribution
of innovation across firms with a simple alternative scenario which replaces Af,t and AI\f,t,t with

their equal weighted means across firms within the industry in a given year: 1
NI(f),t

∑
f∈I(f)Af,t and

1
NI(f),t

∑
f∈I(f)AI\f,t,t, respectively. Whereas the observed distribution of innovation is unequally

distributed across firms, this calculation assumes instead that it is symmetric within a given
industry-year, but allows for heterogeneity across industries and over time.

We also ran a version of the simulation exercise which replaces Af,t and AI\f,t,t with averages
calculated across all firm-years within the same industry for the 1980-1984 period. In this case,
in addition to imposing symmetry, we shut down time series variation in the level of innovation
within an industry, noting that innovation later in our sample period was generally higher than
the observed levels in 1980-1984. Comparing the first and second scenarios speaks to the effects of
time-series variation in average industry-level innovation which occurred during our sample period.
We find that results are fairly similar to the simulation exercise in the main paper, suggesting the
dominant force is actually within-industry heterogeneity in innovation at the same point in time,
rather than variation in the level of innovation over time, that drives our main results. These results
have been suppressed for brevity.

We compute two simple univariate statistics to summarize the changes in inequality induced
by these changes in the innovation measures (results are similar for other percentiles) in the right
tail and left tail of the distribution of income, respectively. To capture changes in the right tail, we
compute the log difference (times 100) between distance between the 95th and 50th percentiles of
earnings levels from the baseline and alternative models. Analogously for the left tail, we compare
the distances 50th and 5th percentiles of earnings levels between baseline and alternative simulations.
While we focus on these statistics for brevity, results are similar for other percentiles.

We also decompose the implied changes in inequality into in between and within-firm components.
For this analysis, we require that a firm is associated with at least 20 observations in a given year.
Our approach follows the construction of Song et al. (2019). For each individual in our sample, we
compute the average level of simulated log earnings associated with all of the his coworkers as of
time t. We then separately plot the changes in the distribution of average firm log earnings and the
distribution of within-firm earnings, which is defined by subtracting the firm-level average from an
individual’s log earnings. There are two key differences between our construction and the one in
Song et al. (2019). First, our earnings measure is cumulated over a longer period of time. Second,
firm average earnings are defined relative to the set of coworkers as of time t, which eliminates the
need to define a new set of co-workers for purposes of the decomposition.
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Appendix Tables and Figures

Figure A.1: Characteristics of the matched sample

Panel A: Number of observations by year
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Panel B: Number of observations by major SIC sector
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Note: The top plot provides counts of the number of public-firm years for which we can find matched W-2 earnings
records in the SSA master earnings file, as well as the number of firm-years for which no earnings records could be
found. We exclude firm-years for which no EIN is available. The bottom panel repeats the analysis by major SIC
sector, where the SIC codes are taken from firms’ financial statements.
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Figure A.2: Firm profitability and innovation across horizons

A. Response to own innovation
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Note: Figure plots the estimated coefficients ah (Panel A) and bh (Panel B) from equation (11) in the main text, as
we vary the horizon over which compute profits from h = −5 to h = 10. The estimated coefficient ah (bh) corresponds
to the relation between the firm’s average profits between years t+ 1 to t+ h and and a 1 standard deviation change
in own firm (competitor) innovation at time t; negative values for h correspond to average profits prior to time t, e.g.
from t− h to t− 1. Bars correspond to 95% confidence intervals computed with standard errors that are clustered by
firm and time.
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Figure A.3: Innovation and growth - Firm-level outcomes across horizons, varying timing conventions
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Note: Figure reports coefficient estimates of equation (11) for firm profits, employment and TFPR. The horizontal axis varies the horizon of the regression. Each
dependent variable corresponds with a different line on the graph. Each specification relates firm growth to innovation by the firm (Af , defined in equation (9) and
the innovation by the firm’s competitors (AI\f , the average innovation of other firms in the same SIC3 industry, see equation (10)). Panels B and C run the same
regressions, changing the timing convention of own and competitor innovation measures to use the filing and approval dates, respectively. Controls include one lag of
the dependent variable, log values of firm capital, employment, and the firm’s idiosyncratic volatility, and industry (I) and time (T) fixed effects. All firm-level
variables are winsorized at the 1% level using annual breakpoints. Standard errors are clustered by firm and year. All right-hand side variables are scaled to unit
standard deviation.
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Figure A.4: Earnings growth and innovation across horizons
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Note: Figure plots the average marginal effects of firm—and competitor—innovation that are implied by the quantile
regression estimates (equation (12) in the main text) across different horizons (number of years of cumulative future
earnings included in earnings growth), where estimates are scaled to correspond with a 1 standard deviation change in
each variable of interest. The units on the vertical axis correspond to log points (times 100).
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Figure A.5: Percentiles of income growth: movers versus continuing workers

Colors indicate worker’s initial earnings rank within the firm:
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B. Stayers
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C. Movers

Note: Figure plots the distribution of 5-year earnings growth for workers of different earnings levels (earnings ranks)
separately for workers that remain with the same firm after 5 years (stayers) and for those that do not (movers).
The top panel plots the average fitted quantiles from the same specification as Figure 4. The middle panel presents
coefficients from the same specification, estimated for the subsample of movers–workers who are employed at the
firm in year t+3; while the bottom panel estimates the same model on workers who are not employed at the same
firm in year t+3. These figures are based on average conditional quantiles from the estimated model. In general, he
average conditional quantiles need not correspond to the unconditional quantiles for each group (Firpo et al., 2011).
However, in our case they do. Appendix Figure A.14 shows these average predicted quantiles are quite similar to the
unconditional quantiles in the data. 61



Figure A.6: Firm stock returns and innovation: movers versus continuing workers

Colors indicate worker’s initial earnings rank within the firm: � [0,25] � [25,50] � [25,75] � [75,95] � [95,100]
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Note: Figure plots the average marginal effects of firm—and competitor—stock returns that are implied by the quantile regression estimates (analogous to equation (12)
in the main text, except that we use own firm and competitor year t returns in place of the innovation measures) for workers with different earnings levels. Estimates
are standardized to correspond with 1 standard deviation effects for each variable of interest. The equation is estimated separately for workers that remain with the
firm (stayers) versus workers that leave the firm (switchers). The worker earnings rank is defined net of deterministic life-cycle effects. We focus on 5-year growth
rates. The units on the vertical axis correspond to log points (times 100).
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Figure A.7: Earnings growth and own firm process/product innovation conditional on worker earnings levels: movers versus continuing workers

Colors indicate worker’s initial earnings rank within the firm: � [0,25] � [25,50] � [25,75] � [75,95] � [95,100]
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C. Own Product Innovation – Stayers
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Note: Figure plots the average marginal effects of firm process/product innovation that are implied by the quantile regression estimates (equation (12) in the main
text) for workers with different earnings levels. Estimates are standardized to correspond with 1 standard deviation effects for each variable of interest. The equation
is estimated separately for workers that remain with the firm (stayers) versus workers that leave the firm (switchers). The worker earnings rank is defined net of
deterministic life-cycle effects. We focus on 5-yr growth rates. The units on the vertical axis correspond to log points (times 100).
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Figure A.8: Earnings growth and own firm innovation conditional on worker earnings levels and tenure: movers versus continuing workers

Colors indicate worker’s initial earnings rank within the firm: � [0,25] � [25,50] � [25,75] � [75,95] � [95,100]
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Note: Figure plots the average marginal effects of firm innovation that are implied by the quantile regression estimates (equation (12) in the main text) for workers
with different earnings levels and years of tenure with the firm. Workers are sorted into two groups based upon whether they have less than 3 years or greater than or
equal to 3 years of tenure, and we allow for separate coefficients for each tenure × lagged earnings bin. Estimates are standardized to correspond with 1 standard
deviation effects for each variable of interest. The equation is estimated separately for workers that remain with the firm (stayers) versus workers that leave the firm
(switchers). The worker earnings rank is defined net of deterministic life-cycle effects. We focus on 5-year growth rates. The units on the vertical axis correspond to
log points (times 100).
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Figure A.9: Earnings growth and competitor innovation conditional on worker earnings levels and tenure: movers versus continuing workers

Colors indicate worker’s initial earnings rank within the firm: � [0,25] � [25,50] � [25,75] � [75,95] � [95,100]
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Note: Figure plots the average marginal effects of firm innovation that are implied by the quantile regression estimates (equation (12) in the main text) for workers
with different earnings levels and years of tenure with the firm. Workers are sorted into two groups based upon whether they have less than 3 years or greater than or
equal to 3 years of tenure, and we allow for separate coefficients for each tenure × lagged earnings bin. Estimates are standardized to correspond with 1 standard
deviation effects for each variable of interest. The equation is estimated separately for workers that remain with the firm (stayers) versus workers that leave the firm
(switchers). The worker earnings rank is defined net of deterministic life-cycle effects. We focus on 5-year growth rates. The units on the vertical axis correspond to
log points (times 100).
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Figure A.10: Earnings growth and own firm innovation conditional on worker earnings levels and tenure: movers versus continuing workers (5 year cutoff)

Colors indicate worker’s initial earnings rank within the firm: � [0,25] � [25,50] � [25,75] � [75,95] � [95,100]
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Note: Figure plots the average marginal effects of firm innovation that are implied by the quantile regression estimates (equation (12) in the main text) for workers
with different earnings levels and years of tenure with the firm. Workers are sorted into two groups based upon whether they have less than 5 years or greater than or
equal to 5 years of tenure, and we allow for separate coefficients for each tenure × lagged earnings bin. Estimates are standardized to correspond with 1 standard
deviation effects for each variable of interest. The equation is estimated separately for workers that remain with the firm (stayers) versus workers that leave the firm
(switchers). The worker earnings rank is defined net of deterministic life-cycle effects. We focus on 5-yr growth rates. The units on the vertical axis correspond to log
points (times 100).
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Figure A.11: Earnings growth and own firm process innovation conditional on worker earnings levels and tenure: movers versus continuing workers

Colors indicate worker’s initial earnings rank within the firm: � [0,25] � [25,50] � [25,75] � [75,95] � [95,100]
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Note: Figure plots the average marginal effects of firm process innovation that are implied by the quantile regression estimates (equation (12) in the main text) for
workers with different earnings levels and for workers with different earnings levels and years of tenure with the firm. Workers are sorted into two groups based
upon whether they have less than 3 years or greater than or equal to 3 years of tenure, and we allow for separate coefficients for each tenure × lagged earnings bin.
Estimates are standardized to correspond with 1 standard deviation effects for each variable of interest. The equation is estimated separately for workers that remain
with the firm (stayers) versus workers that leave the firm (switchers). The worker earnings rank is defined net of deterministic life-cycle effects. We focus on 5-yr
growth rates. The units on the vertical axis correspond to log points (times 100).
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Figure A.12: Earnings growth and competitor innovation conditional on worker earnings levels and tenure: movers versus continuing workers (5 year cutoff)

Colors indicate worker’s initial earnings rank within the firm: � [0,25] � [25,50] � [25,75] � [75,95] � [95,100]
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Note: Figure plots the average marginal effects of firm innovation that are implied by the quantile regression estimates (equation (12) in the main text) for workers
with different earnings levels and years of tenure with the firm. Workers are sorted into two groups based upon whether they have less than 5 years or greater than or
equal to 5 years of tenure, and we allow for separate coefficients for each tenure × lagged earnings bin. Estimates are standardized to correspond with 1 standard
deviation effects for each variable of interest. The equation is estimated separately for workers that remain with the firm (stayers) versus workers that leave the firm
(switchers). The worker earnings rank is defined net of deterministic life-cycle effects. We focus on 5-year growth rates. The units on the vertical axis correspond to
log points (times 100).
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Figure A.13: Earnings growth and innovation conditional on age and earnings levels

Colors indicate worker’s initial earnings rank within the firm: � [0,25] � [25,50] � [25,75] � [75,95] � [95,100]
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Note: Figure plots the average marginal effects of firm innovation that are implied by the quantile regression estimates (equation (12) in the main text) for workers
with different ages and earnings levels. Estimates are standardized to correspond with 1 standard deviation effects for each variable of interest. The worker earnings
rank is defined net of deterministic life-cycle effects. We focus on 5-year growth rates. The units on the vertical axis correspond to log points (times 100).
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Figure A.14: Unconditional quantiles versus average fitted quantiles by firm rank bin
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Note: Figure compares the average fitted quantiles plotted from Figure A.5 of the distribution of 5-year earnings
growth for workers of different earnings levels (earnings ranks) with raw unconditional quantiles calculated for each
group. Estimates are standardized to correspond with 1 standard deviation effects for each variable of interest. In
addition to the specification which is estimated for the full sample, we also repeat the exercise separately for the
subsamples of workers that remain with the same firm after 5 years (stayers) and for those that do not (movers).
Stayers are defined as workers who are employed at the firm in year t+3; while movers workers who are not employed
at the same firm in year t+3.
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Figure A.15: Earnings growth and innovation conditional on earnings levels - control for R&D spending

Colors indicate worker’s initial earnings rank within the firm:
� [0,25] � [25,50] � [25,75] � [75,95] � [95,100]
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B. Competitor Innovation

Note: Figure plots the average marginal effects of firm—and competitor—innovation that are implied by the quantile
regression estimates (equation (12) in the main text) for workers with different earnings levels, where we additionally
control for the ratio of R&D to assets in the regression (and drop firms with missing R&D data). Estimates are
standardized to correspond with 1 standard deviation effects for each variable of interest. The worker earnings rank is
defined net of deterministic life-cycle effects. We focus on 5-yr growth rates. The units on the vertical axis correspond
to log points (times 100).
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Figure A.16: Earnings growth and innovation conditional on earnings levels - alternative firm value scaling factor
for innovation measure

Colors indicate worker’s initial earnings rank within the firm:
� [0,25] � [25,50] � [25,75] � [75,95] � [95,100]
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B. Competitor Innovation (normalized by market value instead of book value)

Note: Figure plots the average marginal effects of firm—and competitor—innovation that are implied by the quantile
regression estimates (equation (12) in the main text) for workers with different earnings levels. Estimates are
standardized to correspond with 1 standard deviation effects for each variable of interest. The difference from the
baseline specification is that our innovation measure is scaled by the market value, rather than the book value, of firm
assets. The worker earnings rank is defined net of deterministic life-cycle effects. We focus on 5-yr growth rates. The
units on the vertical axis correspond to log points (times 100).
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Figure A.17: Earnings growth and innovation conditional on earnings levels – sort on industry income rank

Colors indicate worker’s initial earnings rank within the 3-digit SIC industry:

( � [0,25] � [25,50] � [25,75] � [75,95] � [95,100] )
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B. Competitor Innovation

Note: Figure plots the average marginal effects of firm—and competitor—innovation that are implied by the quantile
regression estimates (equation (12) in the main text) for workers with different earnings levels, where estimates are
scaled to correspond with a 1 standard deviation change in each variable of interest. Whereas the baseline specification
sorts on rank within the firm, here we compute ranks within the same 3-digit SIC industry. The worker earnings
rank is defined net of deterministic life-cycle effects. We focus on 5-year growth rates. The units on the vertical axis
correspond to log points (times 100).
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Figure A.18: Earnings growth and innovation: movers versus continuing workers – sort on industry income rank

Colors indicate worker’s initial earnings rank within the 3-digit SIC industry: � [0,25] � [25,50] � [25,75] � [75,95] � [95,100]
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B. Own Firm Innovation – Movers
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C. Competitor Innovation – Stayers
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D. Competitor Innovation – Movers

Note: Figure plots the average marginal effects of firm—and competitor—innovation that are implied by the quantile regression estimates (equation (12) in the main
text) for workers with different earnings levels, where estimates are scaled to correspond with a 1 standard deviation change in each variable of interest. The equation
is estimated separately for workers that remain with the firm (stayers) versus workers that leave the firm (switchers). Whereas the baseline specification sorts on rank
within the firm, here we compute ranks within the same 3-digit SIC industry. The worker earnings rank is defined net of deterministic life-cycle effects. We focus on
5-year growth rates. The units on the vertical axis correspond to log points (times 100).
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Figure A.19: Earnings growth and process/product innovation: movers versus continuing workers – sort on industry income rank

Colors indicate worker’s initial earnings rank within the 3-digit SIC industry: � [0,25] � [25,50] � [25,75] � [75,95] � [95,100]
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D. Own Firm Product Innovation – Movers

Note: Figure plots the average marginal effects of firm process/product innovation that are implied by the quantile regression estimates (equation (12) in the main
text) for workers with different earnings levels, where estimates are scaled to correspond with a 1 standard deviation change in each variable of interest. The equation
is estimated separately for workers that remain with the firm (stayers) versus workers that leave the firm (switchers). Whereas the baseline specification sorts on rank
within the firm, here we compute ranks within the same 3-digit SIC industry. The worker earnings rank is defined net of deterministic life-cycle effects. We focus on
5-year growth rates. The units on the vertical axis correspond to log points (times 100).
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Figure A.20: Earnings growth and innovation: movers versus continuing workers - exclude years with zero income obs

Colors indicate worker’s initial earnings rank within the firm: � [0,25] � [25,50] � [25,75] � [75,95] � [95,100]
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C. Competitor Innovation (No zeros) – Stayers
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D. Competitor Innovation (No zeros) – Movers

Note: Figure plots the average marginal effects of firm—and competitor—innovation that are implied by the quantile regression estimates (equation (12) in the main
text) for workers with different earnings levels, where workers with any years with zero W-2 earnings are excluded from the estimation. Estimates are standardized to
correspond with 1 standard deviation effects for each variable of interest. The equation is estimated separately for workers that remain with the firm (stayers) versus
workers that leave the firm (switchers). The worker earnings rank is defined net of deterministic life-cycle effects. We focus on 5-yr growth rates. The units on the
vertical axis correspond to log points (times 100).
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Figure A.21: Earnings growth and innovation: valuable vs highly-cited patents

Colors indicate worker’s initial earnings rank within the firm: � [0,25] � [25,50] � [25,75] � [75,95] � [95,100]
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A. Own firm innovation – market value-based measure
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B. Own firm innovation – citation-based measure

Q5 Q10 Q25 Median Q75 Q90 Q95

−12

−10

−8

−6

−4

−2

0

2

4

A
ve

ra
g
e

m
ar

g
in

al
eff

ec
t

C. Competitor innovation – market value-based measure
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D. Competitor innovation – citation-based measure

Note: Figure plots the average marginal effects of firm—and competitor—innovation that are implied by the quantile regression estimates (equation (12) in the
main text) for workers with different earnings levels. In addition to using our market value-based measures of own firm and competitor innovation (Asmf,t and AsmI\f,t,
respectively), we additionally include their citation-based analogs: Acwf,t and AcwI\f,t. Estimates are standardized to correspond with 1 standard deviation effects for each
variable of interest. The equation is estimated separately for workers that remain with the firm (stayers) versus workers that leave the firm (switchers). The worker
earnings rank is defined net of deterministic life-cycle effects. We focus on 5-yr growth rates. The units on the vertical axis correspond to log points (times 100).
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Figure A.22: Earnings growth and competitor citation-weighted innovation conditional on worker earnings levels and tenure: movers versus continuing workers

Colors indicate worker’s initial earnings rank within the firm: � [0,25] � [25,50] � [25,75] � [75,95] � [95,100]
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Tenure < 3 – Movers
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Tenure ≥ 3 – Stayers
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Tenure ≥ 3 —- Movers

Note: Figure plots the average marginal effects of firm process innovation that are implied by the quantile regression estimates (equation (12) in the main text,
except that we also include own-firm and competitor citation-based innovation measures) for workers with different earnings levels and and years of tenure with the
firm. Workers are sorted into two groups based upon whether they have less than 3 years or greater than or equal to 3 years of tenure, and we allow for separate
coefficients for each tenure × lagged earnings bin. Estimates are standardized to correspond with 1 standard deviation effects for each variable of interest. The
equation is estimated separately for workers that remain with the firm (stayers) versus workers that leave the firm (switchers). The worker earnings rank is defined net
of deterministic life-cycle effects. We focus on 5-yr growth rates. The units on the vertical axis correspond to log points (times 100).
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Figure A.23: Earnings growth and innovation: responses to own firm high/low novelty and competitor innovation

Colors indicate worker’s initial earnings rank within the firm: � [0,25] � [25,50] � [25,75] � [75,95] � [95,100]
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A. Own Firm Novel Innovation
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B. Own Firm Less Novel Innovation
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C. Competitor Innovation

Note: Figure plots the average marginal effects of firm—and competitor—innovation that are implied by the quantile regression estimates (equation (12) in the main
text) for workers with different earnings levels. Own firm innovation is separated into novel and less novel categories using the patent pairwise similarity measure of
Kelly et al. (2020). A patent is classified as novel to the firm if its maximum similarity (cosine distance) to the firm’s own prior patents is less than 0.5. The worker
earnings rank is defined net of deterministic life-cycle effects. We focus on 5-yr growth rates. For ease of comparison, marginal effects for novel and less novel own firm
innovation are scaled by the cross-sectional standard deviation of own firm innovation. Competitor innovation is scaled by its cross-sectional standard deviation. The
units on the vertical axis correspond to log points (times 100).
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Figure A.24: Earnings growth and innovation: responses to own firm high/low novelty process, product, and competitor innovation

Colors indicate worker’s initial earnings rank within the firm: � [0,25] � [25,50] � [25,75] � [75,95] � [95,100]
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A. Own Firm Novel Process Innovation
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C. Own Firm Product Innovation
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D. Competitor Innovation

Note: Figure plots the average marginal effects of firm—and competitor—innovation that are implied by the quantile regression estimates (equation (12) in the main
text) for workers with different earnings levels. Each process patent is separated into novel and less novel categories using the patent pairwise similarity measure of
Kelly et al. (2020). A patent is classified as novel to the firm if its maximum similarity (cosine distance) to the firm’s own prior patents is less than 0.5. The worker
earnings rank is defined net of deterministic life-cycle effects. For ease of comparison, marginal effects for novel and non-novel process innovation are scaled by the
standard deviation of process innovation. Product innovation and competitor innovation measures are scaled by their cross-sectional standard deviations. We focus on
5-yr growth rates. The units on the vertical axis correspond to log points (times 100).
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Figure A.25: Earnings growth and innovation conditional on worker earnings levels: most innovative versus other industries

Colors indicate worker’s initial earnings rank within the firm: � [0,25] � [25,50] � [25,75] � [75,95] � [95,100]

Q5 Q10 Q25 Median Q75 Q90 Q95

−2

0

2

4

6

A
ve

ra
g
e

m
a
rg

in
a
l

eff
ec

t

A. Own Firm Innovation – Most Innovative Industries
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B. Own Firm Innovation – Other Industries
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C. Competitor Innovation – Most Innovative Industries
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D. Competitor Innovation – Other Industries

Note: Figure plots the average marginal effects of own firm and competitor innovation that are implied by the quantile regression estimates (equation (12) in the
main text) for workers with different earnings levels. The equation is estimated separately for workers in industries which are in the top tercile of innovativeness,
which is defined as the average across years of the ratio of the market value of patents in each year (aggregated across firms within an industry year) divided by lagged
book assets. We choose the breakpoint so that 1/3 of 3-digit SIC codes (weighted by Compustat employment) are included in the high-tech category. Estimates are
standardized to correspond with 1 standard deviation effects for each variable of interest. The worker earnings rank is defined net of deterministic life-cycle effects.
We focus on 5-yr growth rates. The units on the vertical axis correspond to log points (times 100).
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Figure A.26: Earnings growth and innovation: responses to own firm and competitor innovation, controlling for own/competitor stock returns

Colors indicate worker’s initial earnings rank within the firm: � [0,25] � [25,50] � [25,75] � [75,95] � [95,100]
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A. Own Firm Innovation
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C. Competitor Innovation
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B. Own Firm Stock Return
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D. Competitor Stock Return

Note: Figure plots the average marginal effects of firm—and competitor—innovation that are implied by the quantile regression estimates (equation (12) in the main
text) for workers with different earnings levels. In addition to the own firm and competitor innovation measures from the baseline specification, we also include
controls for own firm and competitor 5 year cumulative profit growth and also allow these coefficients to vary with a worker’s rank within the firm. Estimates are
standardized to correspond with 1 standard deviation effects for each variable of interest. The worker earnings rank is defined net of deterministic life-cycle effects.
We focus on 5-yr growth rates. The units on the vertical axis correspond to log points (times 100).
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Figure A.27: Earnings growth and innovation: responses to own firm and competitor innovation, controlling for own/competitor profit growth

Colors indicate worker’s initial earnings rank within the firm: � [0,25] � [25,50] � [25,75] � [75,95] � [95,100]
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A. Own Firm Innovation
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B. Competitor Innovation
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C. Own Firm 5 Year Profit Growth
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D. Competitor 5 Year Profit Growth

Note: Figure plots the average marginal effects of firm—and competitor—innovation that are implied by the quantile regression estimates (equation (12) in the main
text) for workers with different earnings levels. In addition to the own firm and competitor innovation measures from the baseline specification, we also include
controls for own firm and competitor stock returns and also allow these coefficients to vary with a worker’s rank within the firm. Estimates are standardized to
correspond with 1 standard deviation effects for each variable of interest. The worker earnings rank is defined net of deterministic life-cycle effects. We focus on 5-yr
growth rates. The units on the vertical axis correspond to log points (times 100).
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Table A.1: Worker descriptive statistics: matched sample

Obs Mean SD 1% 5% 10% 25% 50% 75% 90% 95% 99%

Earnings (in thousands of 2013 dollars) 14,621,600 74.2 146.6 4.8 15.9 24.3 39.3 57.6 82.8 123.2 165.4 343.5
Age 14,621,600 39.6 8 26 27 29 33 39 46 51 53 54
Firm tenure 14,621,600 6.2 5.2 1 1 1 2 5 9 14 17 23
Firm tenure ≥ 3 years 14,621,600 0.7 0.4 0 0 0 0 1 1 1 1 1
Firm tenure ≥ 5 years 14,621,600 0.5 0.5 0 0 0 0 1 1 1 1 1
Cumulative 3 year log residual earnings growth 14,593,617 -0.07 0.59 -2.31 -0.88 -0.53 -0.17 -0.01 0.13 0.38 0.58 1.1
Cumulative 5 year log residual earnings growth 13,532,500 -0.09 0.61 -2.38 -0.96 -0.59 -0.21 -0.01 0.15 0.38 0.58 1.11
Cumulative 10 year log residual earnings growth 10,675,095 -0.12 0.65 -2.52 -1.09 -0.69 -0.28 -0.03 0.17 0.41 0.6 1.16
Left firm after 3 years 14,621,600 0.337 0.473 0 0 0 0 0 1 1 1 1
Number of years with zero earnings 13,823,082 0.142 0.566 0 0 0 0 0 0 0 1 3
Number of years with zero earnings, 4,661,544 0.327 0.875 0 0 0 0 0 0 1 3 4
conditional on leaving firm after 3 years

Application for DI 11,128,626 0.026 0.159 0 0 0 0 0 0 0 0 1
Application for DI, 3,988,785 0.041 0.199 0 0 0 0 0 0 0 0 1
conditional on leaving firm after 3 years

Note: Table reports univariate summary statistics for the sample of matched worker-level measures. The unit of analysis is the worker-year.
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Table A.2: Worker descriptive statistics: Full versus matched sample

Panel A. Matched sample

Obs Mean SD 1% 5% 10% 25% 50% 75% 90% 95% 99%

Earnings (in thousands of 2013 dollars) 14,621,600 74.2 146.6 4.8 15.9 24.3 39.3 57.6 82.8 123.2 165.4 343.5
Age 14,621,600 39.6 8 26 27 29 33 39 46 51 53 54
Firm tenure 14,621,600 6.2 5.2 1 1 1 2 5 9 14 17 23
Firm tenure ≥ 3 years 14,621,600 0.7 0.4 0 0 0 0 1 1 1 1 1
Firm tenure ≥ 5 years 14,621,600 0.5 0.5 0 0 0 0 1 1 1 1 1
Cumulative 3 year log residual earnings growth 14,593,600 -0.07 0.59 -2.31 -0.88 -0.53 -0.17 -0.01 0.13 0.38 0.58 1.1
Cumulative 5 year log residual earnings growth 13,532,500 -0.09 0.61 -2.38 -0.96 -0.59 -0.21 -0.01 0.15 0.38 0.58 1.11
Cumulative 10 year log residual earnings growth 10,675,100 -0.12 0.65 -2.52 -1.09 -0.69 -0.28 -0.03 0.17 0.41 0.6 1.16
Left firm after 1 year 14,621,600 0.153 0.36 0 0 0 0 0 0 1 1 1
Left firm after 3 years 14,621,600 0.337 0.473 0 0 0 0 0 1 1 1 1
Number of years with zero earnings 13,823,100 0.142 0.566 0 0 0 0 0 0 0 1 3
Number of years with zero earnings, 4,661,500 0.327 0.875 0 0 0 0 0 0 1 3 4
conditional on leaving firm after 3 years
Application for DI 11,128,600 0.026 0.159 0 0 0 0 0 0 0 0 1
Application for DI, 3,988,800 0.041 0.199 0 0 0 0 0 0 0 0 1
conditional on leaving firm after 3 years

Panel B. SSA worker sample (based on 10% sample)

Obs Mean SD 1% 5% 10% 25% 50% 75% 90% 95% 99%

Earnings (in thousands of 2013 dollars) 110927670 58.2 124.1 2.7 7.8 13.8 26.5 43.4 66 100.3 138.2 313.5
Age 104,030,810 38.9 8.1 26 27 28 32 38 46 51 52 54
Firm tenure 110,758,800 5.1 4.7 1 1 1 2 3 7 12 15 21
Firm tenure ≥ 3 years 110,758,800 0.6 0.5 0 0 0 0 1 1 1 1 1
Firm tenure ≥ 5 years 110,758,800 0.4 0.5 0 0 0 0 0 1 1 1 1
Cumulative 3 year log residual earnings growth 103,627,700 -0.09 0.65 -2.63 -1.09 -0.64 -0.21 -0.01 0.15 0.43 0.66 1.27
Cumulative 5 year log residual earnings growth 93,147,900 -0.1 0.67 -2.69 -1.15 -0.69 -0.25 -0.02 0.17 0.44 0.67 1.3
Cumulative 10 year log residual earnings growth 68,598,500 -0.12 0.71 -2.8 -1.26 -0.77 -0.3 -0.02 0.19 0.47 0.71 1.38
Left firm after 1 year 110,535,700 0.249 0.432 0 0 0 0 0 0 1 1 1
Left firm after 3 years 110,013,200 0.454 0.498 0 0 0 0 0 1 1 1 1
Number of years with zero earnings 101,607,000 0.248 0.792 0 0 0 0 0 0 1 2 4
Number of years with zero earnings, 46,355,400 0.467 1.085 0 0 0 0 0 0 2 3 5
conditional on leaving firm after 3 years
Application for DI 88,363,000 0.031 0.173 0 0 0 0 0 0 0 0 1
Application for DI, 39,136,500 0.048 0.213 0 0 0 0 0 0 0 0 1
conditional on leaving firm after 3 years

Note: Table reports univariate summary statistics for the sample of matched (Panel A) and unmatched (Panel B) worker-level measures. The unit of analysis is the
worker-year. Sample sizes have been rounded to the nearest 100.
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Table A.3: Firm descriptive statistics: matched vs non-matched sample

A. Matched sample

Obs Mean SD 1% 5% 10% 25% 50% 75% 90% 95% 99%

Employment (1000s) 117,300 8.42 36.88 0.01 0.02 0.05 0.17 0.79 4 16.5 37.9 128.9
Employment (SSA, 1000s) 119,900 3.77 16.34 0 0.01 0.02 0.08 0.34 1.7 7.0 16.0 59.2
Book assets, log 119,900 4.87 2.24 0.46 1.4 2.0 3.3 4.7 6.4 7.9 8.8 10.3
Return on assets 119,500 -0.01 0.28 -1.31 -0.55 -0.27 -0.01 0.07 0.12 0.17 0.2 0.29
R&D to assets 73,600 0.09 0.14 0 0 0 0.01 0.04 0.11 0.23 0.37 0.75
Firm volatility 110,600 -3.4 0.56 -4.54 -4.29 -4.13 -3.81 -3.41 -3.02 -2.65 -2.44 -2.05
Firm stock return 118,600 0.14 0.74 -0.86 -0.68 -0.54 -0.27 0.03 0.37 0.85 1.34 2.85
Industry stock return 118,300 0.13 0.29 -0.51 -0.33 -0.21 -0.05 0.12 0.29 0.47 0.62 0.9
Firm innovation 119,900 0.06 0.24 0 0 0 0 0 0.01 0.12 0.31 1.12
Firm innovation, non-process 119,900 0.03 0.13 0 0 0 0 0 0 0.06 0.17 0.64
Firm innovation, process 119,900 0.02 0.08 0 0 0 0 0 0 0.03 0.09 0.39
Competitor innovation 119,900 0.15 0.27 0 0 0 0 0.04 0.19 0.43 0.7 1.19

B. Non-Matched sample

Obs Mean SD 1% 5% 10% 25% 50% 75% 90% 95% 99%

Employment (1000s) 24,900 5.84 30.6 0 0 0.02 0.11 0.63 2.8 9.9 21.8 108.8
Book assets, log 25,900 4.89 2.19 0.4 1.4 2 3.3 4.9 6.4 7.7 8.6 10.2
Return on assets 25,700 -0.02 0.29 -1.31 -0.57 -0.28 -0.02 0.06 0.11 0.17 0.21 0.31
R&D to assets 12,200 0.08 0.14 0 0 0 0 0.02 0.09 0.22 0.35 0.76
Firm volatility 19,500 -3.28 0.56 -4.51 -4.18 -3.99 -3.68 -3.3 -2.9 -2.53 -2.33 -1.94
Firm stock return 25,500 0.1 0.71 -0.87 -0.72 -0.59 -0.31 0 0.33 0.82 1.33 2.67
Industry stock return 25,300 0.11 0.27 -0.51 -0.33 -0.21 -0.05 0.11 0.26 0.43 0.59 0.86
Firm innovation 25,900 0.01 0.11 0 0 0 0 0 0 0 0.03 0.34
Firm innovation, non-process 25,900 0.01 0.05 0 0 0 0 0 0 0 0.01 0.15
Firm innovation, process 25,900 0 0.04 0 0 0 0 0 0 0 0 0.09
Competitor innovation 25,900 0.1 0.2 0 0 0 0 0.01 0.13 0.29 0.43 1.07

Note: Table reports univariate summary statistics for the sample of matched (Panel A) and unmatched (Panel B) public firms. The unit of analysis is the
GVKEY-year. Sample sizes have been rounded to the nearest 100.
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Table A.4: Earnings growth and own/competitor innovation, stock returns, and profit growth conditional on earnings
levels: OLS estimates

A. Innovation

Variable Scaling
Earnings rank

[0,25] [25,50] [50,75] [75,95] [95,100]

Innovation by the firm, Af StdDev 1.19 1.09 1.40 1.85 1.53
Elasticity 0.149 0.137 0.176 0.231 0.191

[10.86] [8.07] [9.98] [14.41] [8.34]

Innovation by competitors, AI\f StdDev -1.92 -1.40 -1.01 -2.20 -5.92

Elasticity 0.39 0.284 0.204 0.444 1.201
[-6.41] [-5.68] [-3.91] [-6.87] [-11.9]

B. Stock returns

Variable Scaling
Earnings rank

[0,25] [25,50] [50,75] [75,95] [95,100]

Own firm stock return, Rf Elasticity 0.0355 0.0314 0.0306 0.0403 0.0673
[15.21] [15.91] [13.66] [14.07] [11.85]

Competitor stock return, RI\f Elasticity 0.0570 0.0236 0.0218 0.0238 0.0485

[7.26] [3.99] [4.11] [3.29] [3.06]

C. Profit growth over the next 5 years

Variable Scaling
Earnings rank

[0,25] [25,50] [50,75] [75,95] [95,100]

Own firm profit growth, Elasticity 0.0921 0.0706 0.0672 0.0728 0.1283

log
[

1
|5|
∑5

τ=1Xf,t+τ

]
− logXf,t [33.129] [28.016] [26.047] [18.909] [17.456]

Competitor profit growth Elasticity 0.0092 0.0049 0.0023 0.0002 0.0021

log
[

1
|5|
∑5

τ=1XI\f,t+τ

]
− logXf,t [5.274] [3.829] [1.513] [0.119] [0.814]

Note: Table plots the average marginal effects of firm—and competitor—innovation that are implied by OLS estimates
of equation (12) in the main text, where we allow for heterogenous coefficients for workers with different earnings levels.
In panel A, we use our baseline own and competitor innovation measures, and estimates are scaled to correspond with
a 1 standard deviation changes in each (analogous to Figure 4 in the main text). We additionally report the ratio
of these coefficients to the firm-level slope coefficients from Table 1. In panels B and C, we report coefficients for
analogous specifications where we use own firm and competitor stock returns and 5 year cumulative profit growth,
respectively. The worker earnings rank is defined net of deterministic life-cycle effects. We focus on 5-year growth
rates. The units on the vertical axis correspond to log points (times 100).
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Table A.5: Worker mobility following innovation

Dependent variable: Indicator for leaving the firm within 3 years (×100)

i. Innovation
Worker earnings rank

[0,25] [25,50] [50,75] [75,95] [95,100]

Innovation by the firm, Af -1.91 -1.74 -1.74 -1.70 -1.46
(-14.65) (-13.63) (-13.13) (-12.80) (-9.56)

Innovation by competitors, AI\f -1.09 -0.20 0.42 1.11 1.13

(-4.22) (-0.79) (1.67) (4.33) (4.03)

ii. Stock return
Worker earnings rank

[0,25] [25,50] [50,75] [75,95] [95,100]

Firm stock return, Rf -2.33 -2.48 -2.71 -2.94 -3.31
(-15.08) (-15.84) (-17.47) (-17.83) (-18.99)

Competitor stock return, RI\f -0.14 0.15 0.32 0.67 0.91

(-0.97) (1.06) (2.20) (4.49) (5.61)

Note: This table reports point estimates of OLS regressions of equation (14) in the paper. The dependent variable
is a dummy which equals 1 if, at t + 3, a worker is no longer employed at the same firm as at time t (×100). We
allow the coefficients on innovation to vary across workers with different earnings ranks, which are defined net of
deterministic life-cycle effects. The coefficients are standardized to a unit-standard deviation shock in the independent
variable. Standard errors, in parentheses, are clustered at the firm level. Panel A is the same as Table 2 in the paper,
and is included for comparison. In Panel B, we replace the firm and competitor innovation measures with their stock
returns (in a direct analogue to Figure 7).
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Table A.6: Earnings growth and own/competitor innovation or stock returns conditional on earnings levels and
mobility status: OLS estimates

A. Innovation

Variable
Mobility

Scaling
Earnings rank

Status [0,25] [25,50] [50,75] [75,95] [95,100]

Innovation by the firm, Af Overall StdDev 1.19 1.09 1.40 1.85 1.53
Elasticity 0.149 0.137 0.176 0.231 0.191

[10.86] [8.07] [9.98] [14.41] [8.34]
Stayer StdDev 1.08 1.38 1.61 2.08 2.16

Elasticity 0.135 0.173 0.201 0.261 0.271
[7.48] [9.79] [10.46] [14.07] [9.22]

Switcher StdDev -0.28 -0.23 0.38 0.75 -1.04
Elasticity -0.035 -0.028 0.047 0.093 -0.13

[-1.92] [-1.5] [3.11] [4.97] [-2.65]

Innovation by competitors, AI\f Overall StdDev -1.92 -1.40 -1.01 -2.20 -5.92

Elasticity 0.39 0.284 0.204 0.444 1.201
[-6.41] [-5.68] [-3.91] [-6.87] [-11.9]

Stayer StdDev -2.07 -1.37 -0.60 -1.22 -4.21
Elasticity 0.419 0.279 0.122 0.248 0.854

[-6.39] [-6.12] [-3.11] [-5] [-8.76]
Switcher StdDev -1.90 -1.31 -1.25 -3.05 -7.99

Elasticity 0.385 0.266 0.253 0.618 1.622
[-6.82] [-5.22] [-5.06] [-8.18] [-13.18]

B. Stock returns

Variable
Mobility

Scaling
Earnings rank

Status [0,25] [25,50] [50,75] [75,95] [95,100]

Own firm stock return, Rf Overall Elasticity 0.0355 0.0314 0.0306 0.0403 0.0673
[15.21] [15.91] [13.66] [14.07] [11.85]

Stayer Elasticity 0.0328 0.0293 0.0323 0.0427 0.0686
[13.17] [13.49] [12.05] [14.48] [13.1]

Switcher Elasticity 0.0113 0.0129 0.0106 0.018 0.042
[2.94] [4.65] [4.41] [5.77] [6.19]

Competitor stock return, RI\f Overall Elasticity 0.0570 0.0236 0.0218 0.0238 0.0485

[7.26] [3.99] [4.11] [3.29] [3.06]
Stayer Elasticity 0.0128 0.0088 0.0122 0.0193 0.0532

[2.13] [1.96] [2.76] [3.02] [4.11]
Switcher Elasticity 0.0775 0.038 0.0351 0.0389 0.0509

[9.03] [4.6] [4.35] [3.94] [1.99]

Note: Table plots the average marginal effects of firm—and competitor—innovation that are implied by OLS estimates
of equation (12) in the main text, where we allow for heterogenous coefficients for workers with different earnings
levels. We also report estimates where the equation is estimated separately for workers that remain with the firm
(stayers) versus workers that leave the firm (switchers). In panel A, we use our baseline own and competitor innovation
measures, and estimates are scaled to correspond with a 1 standard deviation changes in each (analogous to Figure 4
in the main text). We additionally report the ratio of these coefficients to the firm-level slope coefficients from Table 1
(’elasticity’). In panel B, we report coefficients for analogous specifications where we replace the innovation measures
with own firm and competitor stock returns. The worker earnings rank is defined net of deterministic life-cycle effects.
We focus on 5-year growth rates. The units on the vertical axis correspond to log points (times 100).
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Table A.7: Innovation and long-term unemployment

A. Number of years unemployed (×100), 5yr horizon

Innovation
Worker earnings rank

[0,25] [25,50] [50,75] [75,95] [95,100]

Innovation by the firm, Af -0.28 0.55 0.43 0.61 1.06
[-2.58] [6.32] [4.96] [4.40] [5.44]

Innovation by competitors, AI\f -0.73 0.49 1.42 2.07 2.17

[-3.55] [3.08] [9.20] [10.33] [8.36]

B. Application for disability insurance (DI) indicator (×100), 5yr horizon

Innovation
Worker earnings rank

[0,25] [25,50] [50,75] [75,95] [95,100]

Innovation by the firm, Af -0.11 0.02 0.04 0.05 0.08
[-6.56] [1.46] [3.92] [6.03] [7.05]

Innovation by competitors, AI\f -0.35 -0.16 0.02 0.18 0.19

[-8.70] [-5.41] [0.76] [7.35] [5.87]

Note: This table reports a modified version of Table 2 in the paper, in which the dependent variables are defined
unconditionally, that is, we are not conditioning on whether the worker has left the firm. Specifically, Panel A reports
OLS estimates of equation (15) in the paper. The dependent variable is a count of the number of years of zero W2
earnings worker i has experienced between years t+ 1 and t+ 5 (×100). Panel B reports estimates of equation (16) in
the paper. The dependent variable is a dummy that takes the value of 1 if worker i has applied for disability insurance
at any point between years t+ 1 and t+ 5 (×100). In both cases, we allow the response of the dependent variable to
innovation (by the firm Af or its competitors AI\f ) to vary based on the worker’s earnings rank, which are defined
net of deterministic life-cycle effects. The coefficients are standardized to a unit-standard deviation shock in the
independent variable. Standard errors, in parentheses, are clustered at the firm level.
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Table A.8: Innovation and long-term unemployment: process vs non-process

A. Number of years unemployed (× 100), 5yr horizon
(conditional on having left firm within 3 yrs)

Innovation
Earnings rank

[0,25] [25,50] [50,75] [75,95] [95,100]

Firm Process 3.41 3.19 3.62 4.33 6.23
[3.00] [3.36] [4.05] [4.07] [3.92]

Firm Non-process -0.82 1.44 0.79 1.02 2.34
[-1.25] [2.49] [1.61] [1.81] [2.56]

Innovation by competitors, AI\f -0.4 1.28 2.95 3.92 3.86

[-1.17] [4.51] [10.37] [11.01] [8.17]

B. Application for disability insurance (DI) indicator (× 100), 5yr horizon
(conditional on having left firm within 3 yrs)

Innovation
Earnings rank

[0,25] [25,50] [50,75] [75,95] [95,100]

Process innovation by the firm -0.47 -0.04 0.12 0.34 0.15
[-2.32] [-0.34] [1.50] [5.56] [1.50]

Other innovation by the firm 0.17 0.11 0.05 -0.04 0.10
[1.31] [1.29] [0.98] [-1.08] [1.64]

Innovation by competitors, AI\f -0.37 -0.16 0.1 0.32 0.37

[-6.13] [-3.28] [2.55] [8.13] [6.87]

Note: This table reports a extension of the results reported in Table 2 in the paper, in which we decompose the
firm innovation measure into process and non-process, in a manner analogous to the results in Figure 6. Panel A
reports OLS estimates of equation (15) in the paper. The dependent variable is a count of the number of years of
zero W2 earnings worker i has experienced between years t+ 1 and t+ 5. Panel B reports estimates of equation (16)
in the paper. The dependent variable is a dummy that takes the value of 1 if worker i has applied for disability
insurance at any point between years t+ 1 and t+ 5. In both cases, we allow the response of the dependent variable
to innovation (by the firm Af or its competitors AI\f ) to vary based on the worker’s earnings rank, which are defined
net of deterministic life-cycle effects. For ease of comparison of magnitudes, coefficients on both types of own-firm
innovation are standardized to a unit-standard deviation shock in Af (overall firm innovation), expressed in percentage
points (times 100), and coefficients on competitor innovation are scaled by the cross-sectional standard deviation of
the competitor innovation measure. Standard errors, in parentheses, are clustered at the firm level.
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Table A.9: Innovation and long-term unemployment: by worker tenure

A. Probability of leaving the firm within 3 years

Innovation Tenure
Earnings rank

[0,25] [25,50] [50,75] [75,95] [95,100]

Innovation by the firm, Af Low -2.52 -2.34 -2.21 -2.08 -1.85
[-18.31] [-15.95] [-13.94] [-13.92] [-9.43]

High -1.38 -1.45 -1.53 -1.51 -1.21
[-9.15] [-10.3] [-10.9] [-10.69] [-7.09]

Innovation by competitors, AI\f Low -1.57 -0.65 -0.16 0.86 0.81

[-6.12] [-2.49] [-0.59] [3.09] [2.35]
High -0.35 0.07 0.54 0.96 1.11

[-1.19] [0.24] [1.99] [3.48] [3.73]

B. Number of years unemployed, 5yr horizon
(conditional on having left firm within 3 yrs)

Innovation Tenure
Earnings rank

[0,25] [25,50] [50,75] [75,95] [95,100]

Innovation by the firm, Af Low 0.12 1.15 1.05 1.37 2.65
[0.47] [5.67] [4.81] [4.49] [4.67]

High 1.34 2.25 1.86 2.2 3.27
[4.68] [8.11] [7.88] [6.47] [6.04]

Innovation by competitors, AI\f Low 0.11 2.16 3.03 3.93 3.64

[0.3] [6.55] [9.69] [10.94] [6.87]
High -1.33 0.38 2.97 3.99 4.08

[-2.94] [1.09] [8.38] [8.49] [6.34]

C. Application for disability insurance (DI), 5yr horizon
(conditional on having left firm within 3 yrs)

Innovation Tenure
Earnings rank

[0,25] [25,50] [50,75] [75,95] [95,100]

Innovation by the firm, Af Low -0.1 0.08 0.07 0.06 0.08
[-3.36] [2.63] [4.03] [3.79] [3.22]

High 0.01 0.04 0.06 0.09 0.1
[0.34] [1.31] [2.73] [5.63] [5.36]

Innovation by competitors, AI\f Low -0.33 -0.05 0.15 0.41 0.38

[-4.93] [-0.9] [3.7] [8.33] [5.31]
High -0.45 -0.27 0.07 0.27 0.35

[-4.84] [-4.31] [1.35] [6.17] [5.91]

Note: This table reports an extension of the results reported in Table 2 in the paper, in which we allow the effects
to vary with earnings rank and worker tenure. Specifically, we separate workers into two groups based on whether
Panel A reports OLS estimates of equation (15) in the paper, where the dependent variable is multiplied by 100. In
Panel B, the dependent variable is 100 × a count of the number of years of zero W2 earnings worker i has experienced
between years t+ 1 and t+ 5. Panel C reports estimates of equation (16) in the paper. The dependent variable is
100 × a dummy that takes the value of if worker i has applied for disability insurance at any point between years
t+ 1 and t+ 5. In both cases, we allow the response of the dependent variable to innovation (by the firm Af or its
competitors AI\f ) to vary based on the worker’s earnings rank, which are defined net of deterministic life-cycle effects,
and whether the worker’s tenure within the firm was above or below the median value of 3 years. The coefficients
are standardized to a unit-standard deviation shock in Af (overall firm innovation) and coefficients on competitor
innovation are omitted for brevity. Standard errors, in parentheses, are clustered at the firm level.
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