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Abstract 

This paper examines the effect of the increase in the Social Security Full Retirement Age 

(FRA) and the associated decrease in benefits for early claimants on retirement rates at ages 62 

to 65.  It uses information on age, sex, and labor force participation from the monthly Current 

Population Survey from 1976 to 2019.  Critical components of the analysis include a difference-

in-difference framework, comparison of three measures of retirement status, estimation of 

nonparametric and parametric models, and a test of the assumptions underlying the difference-in-

difference approach.  Although our model satisfied that test, the results do not guarantee that our 

specification is valid. 

 

The paper found that: 

• The increase in the FRA decreased the retirement rate at age 62 by about 5 percentage 

points (or 30 percent) for men and by about 2 percentage points (or about 20 percent) for 

women.  The retirement rate at age 63 to 65 was not affected. 

• Estimates of the parametric model show that a 1 percent increase in the early claiming 

reduction decreases the retirement rate by between 0.7 and 0.9 percentage points for men 

and between 0.2 and 0.4 percentage points for women. 

 

The policy implications of the findings are:  

• Our findings can inform evaluations of policy proposals to further increase the Social 

Security FRA. 

• Our findings contribute to the understanding of the effects that the availability and 

generosity of pension benefits have on retirement decisions. 

 



 

Introduction 

Even though it is one of the most researched topics in the retirement literature, the extent 

to which the availability and generosity of pensions, particularly Social Security benefits, 

influence workers’ retirement decisions remains uncertain.  Studies have produced a wide range 

of estimates depending on the methodological approach and data used.  Relatively recent 

estimates of how a reduction in Social Security benefits affects labor force participation at age 62 

for the beneficiaries who claim at that age run from a negative impact (Gustman and Steinmeier, 

2009) to an impact that is statistically indistinguishable from zero (Blau and Goodstein, 2010) to 

one that is positive and large (Mastrobuoni, 2009).  The main challenge in estimating these 

effects is identifying the pension effect and isolating it from all other effects that affect 

retirement behavior, such as the demographic composition of the population, economic 

conditions, and social norms.  This study contributes a fresh perspective to this question by 

applying a difference-in-difference framework to the latest data. 

In particular, we study the effects that an increase in the Social Security Full Retirement 

Age (FRA),1 and the associated reduction in benefits for those who claim before the FRA, have 

had on the retirement behavior of older Americans.  Beneficiaries who claim their benefits at the 

FRA receive the full amount of their primary insurance amount (PIA), which is calculated based 

on beneficiaries’ 35 highest annual earnings.  The 1983 Social Security reforms raised the FRA, 

which had been 65, by two months for each successive birth cohort, beginning with people born 

in 1938, until it reached 66 for those born in 1943. The reforms further raised the FRA to 67 for 

people born in 1960 and later, again phasing in the increase by two-month increments beginning 

with those born in 1955.  Benefits can be claimed as early as 62, but early claimants received 

reduced monthly benefits.  The increase in the FRA also reduced monthly Social Security 

benefits paid to beneficiaries who claim early.  For example, a person born in 1937, whose FRA 

is 65, would receive 80 percent of their full benefits if they claimed at 62.  In contrast, a person 

born in 1943, whose FRA is 66, would receive only 75 percent of their full benefits if they 

claimed at 62. 

Our study exploits this variation in benefit reduction across cohorts to estimate the effect 

of benefit reduction on labor force participation.  We use a difference-in-difference approach, 

 
1 The FRA is also referred to as “Normal Retirement Age” (“Normal Retirement Age,” Social Security 

Administration, accessed August 12, 2020, https://www.ssa.gov/oact/progdata/nra.html). 
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similar to the one used by Song and Manchester (2007), to compare changes in retirement rates 

at ages 62 to 65 with changes in retirement rates at younger ages at which benefits are not 

available.  This approach allows us to control for secular trends in the retirement rate and to 

isolate the effects of a Social Security benefits reduction.  Because the treatment and control 

groups include the same birth cohorts, we are also able to control for any cohort-specific effects. 

We estimate a range of specifications, which allows us to compare different assumptions 

and test the sensitivity of our results.  In particular, we estimate a parametric and nonparametric 

difference-in-difference specification.  We provide estimates for three age- and cohort-specific 

measures of retirement status: the retirement incidence rate, defined as the share of people born 

in a given year who retire at a given age; the retirement hazard rate, defined as the share of 

people born in a given year and participating in the labor force before reaching a given age who 

retire at that age; and the cumulative retirement rate, defined as the share of people born in a 

given year who are retired at a given age.  We verify the main identifying assumption in our 

difference-in-difference design, which is the existence of a common trend in the treatment and 

control groups, and conduct sensitivity analysis with respect to the control group used.  In 

addition, we try to reproduce estimates by Mastrobuoni (2009) on his original sample and on our 

sample that includes more recent birth cohorts. 

Our preferred measure of retirement status is the incidence rate, for which the estimated 

effects of the Social Security reform are strong at age 62 for both men and women and 

statistically insignificant at ages 63 to 65.  The retirement hazard rate shows significant and large 

effects at ages 62 and 65, while those at 63 and 64 are relatively small and not significant in all 

specifications.  We have the least amount of confidence in the estimates that use the cumulative 

retirement rate, but we present them for comparison.  We find that the control age can 

substantially affect the estimated magnitude, but it rarely changes the sign or statistical 

significance of the estimates.  Our tests of identifying assumptions show that, for most 

combinations of treatment and control ages, the common trend hypothesis cannot be rejected for 

incidence and hazard rates.  In the case of the cumulative retirement rate, the hypothesis is 

rejected in most cases for men but not for women. 
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Background 

The decision about when to retire can be dauntingly complex.  To make the optimal 

decision, an individual has to consider a number of choices and the consequences for their 

potential income streams.  This optimization problem in some ways resembles a search for the 

best move in a chess game, requiring that a player considers not only all possible current moves 

but also potential future moves and their availability conditional on the current move.  An 

individual’s decision to retire not only determines the future stream of income, but, because 

some retirement decisions are irreversible (e.g. few workers can return to their job after they 

leave), it also limits the universe of options available in the future.  Evaluation of each of these 

many options requires complex calculations that include estimation of likely future incomes. 

Early studies made their best attempts to model this sort of decision making 

mathematically by assuming a worker’s utility function, constructing their budget constraint, and 

deriving optimality conditions.  Although theoretically sound, these types of models were 

difficult to translate into empirical models that could identify, with available data, the effect of 

pensions on retirement decisions.  They resulted in a wide range of estimates that depended on 

researchers’ assumptions, from virtually no effect (Gordon and Blinder, 1980) to large effects 

that explained almost the entire change in retirement rates over time (Boskin, 1977; Boskin and 

Hurd, 1977).  Recognizing this problem, several studies that followed focused on changes in 

Social Security benefits as the source of identification.  Until 1972, when Social Security began 

providing automatic cost-of-living adjustments, the benefit amount was based on nominal 

earnings and any adjustment for inflation was set by Congress.  These adjustments were usually 

unpredictable and sometimes large, and some researchers used them as exogenous shocks to 

individuals’ expected future wealth.  Hurd and Boskin (1984) found that an unexpectedly large 

increase in Social Security benefits between 1969 and 1972 could explain most of the decline in 

the labor force participation of older men during that time.  One particularly interesting shock 

occurred in 1977 when Congress overcorrected an unintentionally large increase in the wage-

indexing of benefits enacted in 1972.  This created a cohort of Social Security recipients (the so-

called notch generation born between 1917 and 1921) for whom the benefit amount, adjusted for 

inflation, decreased dramatically relative to previous cohorts.  Krueger and Pischke (1992) used 

this anomaly as the source of identification and, with some improvements in methodology, found 

no significant effect of changes in Social Security wealth on labor supply. 
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Two more recent studies exemplify these different approaches to the estimation of the 

effect of changes in Social Security rules on retirement behavior.  Blau and Goodstein (2010) 

take a parametric approach by modeling the retirement decision rule implied by the life-cycle 

model.  Their dataset covers the years 1972, 1977, and 1983, when significant changes to Social 

Security were made.  In contrast, Mastrobuoni (2009) uses a fully nonparametric approach and 

focuses only on the effects of the 1983 reform.  Although Blau and Goodstein found that the 

1983 reforms had non-negligible effects on labor supply, their estimates are substantially smaller 

than Mastrobuouni’s.  As authors of both papers note, this discrepancy may be due to the 

capacity of nonparametric specifications to capture noneconomic channels, such as social norms, 

through which pensions affect retirement behavior.  Another advantage of nonparametric models 

is that they do not require an assumption about the functional form of the explanatory variable.  

On the other hand, parametric models often provide a useful interpretation of the estimates and 

allow them to be used in projections of future or counterfactual outcomes. 

 

Data and Methods 

We use monthly Current Population Survey (CPS)2 data from 1976 to 2019 to obtain 

information on labor force participation, age, and gender for a nationally representative sample 

of people ages 58 to 65.  Because the CPS only asks for age at the time of the interview, birth 

year cannot be determined with certainty.  Estimating it by subtracting age from the survey year 

would misclassify a large share of participants.  The likelihood of misclassification is highest for 

the January sample and the lowest for the December sample.  To reduce this likelihood, we 

follow a suggestion by Mastrobuoni (2009) to use only the December and January samples of 

CPS and adjust the birth year of the participants interviewed in January by subtracting one year 

from the difference between the survey year and age. 

We constructed three age- and cohort-specific measures of retirement status based on the 

CPS participants’ labor force status.  First, we estimated the retirement incidence rate as a 

weighted share of the population born in a given year who leave the labor force at a given age, 

which is the sample equivalent of the cohort-specific unconditional probability of retiring at a 

given age.  Second, we estimated the retirement hazard rate as a weighted share of workers born 

in a given year and participating in the labor force up to a given age who retire at that age, which 

 
2 Data obtained from King et al. (2018). 
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is the sample equivalent of the cohort-specific conditional probability of retiring at a given age.  

Third, we estimated the cumulative retirement rate as a weighted share of the population born in 

a given year who were not in labor force at the time of the survey.  Under the assumption that 

retirement is an absorbing state, this measure is the empirical distribution function of the 

retirement age, whose value at a particular age equals the sum of the retirement incidence rates at 

ages younger than or equal to that age.  For the incidence and hazard rates, we exploited the 

panel nature of the monthly CPS to obtain participants’ labor status information at two times that 

are 12 months apart.  Because only 50 percent of the sample is repeated at this frequency,3 the 

incidence and hazard rates are estimated on a smaller sample, and thus with a lower precision, 

than the cumulative retirement rate. 

Our main goal is to estimate changes in retirement behavior that were caused by the 

increase in the FRA implemented by the 1983 Social Security reform and isolate it from any 

secular trends in retirement behavior that might have existed during the observed period.  Ages 

directly affected by the reform are all ages at which Social Security beneficiaries can claim 

benefits, but we focus on ages at which the affected cohorts would have their benefits reduced 

due to early claiming: 62 to 65.  Our goal, then, is to estimate retirement rates for the 1938 and 

later cohorts at these ages relative to what they would have been if there had been no change in 

Social Security rules.  The main challenge is that these counterfactual retirement rates are 

unknown.  

One way to overcome this challenge and construct the counterfactual rates is to start with 

the pre-intervention trend and adjust it by the effects of all other factors that shifted labor force 

participation over the observed period.  If successful, this approach would produce the 

counterfactual retirement rates that would have prevailed in the absence of Social Security 

reform.  This is the essence of the method used by Mastrobuoni (2009), even though he did not 

explicitly construct the counterfactual.  Because our methods build on his, we start by briefly 

outlining it. 

Mastrobuoni’s method can be divided into three steps. First, the dependent variable 𝑦𝑖, 

which equals one if person i of age 𝐴𝑖 born in year 𝐶𝑖 is retired and zero otherwise, is regressed 

on a set of age and birth year dummies and a vector of individual characteristics and economic 

outcomes 𝑋𝑖: 

 
3 U.S. Census Bureau (2006, p. 13-14). 
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𝑦𝑖 = ∑ 𝕀(𝐴𝑖 = 𝑎)

65

𝑎=61

(𝜆𝑎 + ∑ 𝛽𝑎,𝑐𝕀(𝐶𝑖 = 𝑐)

 

𝑐≠1937

) + 𝛿′𝑋𝑖 + 휀𝑖 
(

1) 

 

The estimate of interest, 𝛽𝑎𝑐 , is the coefficient on the interaction term between age and 

birth-year dummies, 𝜆𝑎 represents age fixed effects, 𝛿 is a vector of parametric estimates of 

effects of other factors that affect retirement rate, and 휀𝑖 is the error term.  The base birth year 

omitted from the model is 1937, so the interaction coefficients can be interpreted as the 

difference of the cumulative probabilities of retirement at age a between cohorts c and 1937: 

 

�̂�𝑎𝑐 = 𝐸[𝑦|𝐶 = 𝑐, 𝑎, 𝑋] − 𝐸[𝑦|𝐶 = 1937, 𝑎, 𝑋] 

 

In the second step, these estimates are combined to calculate the cohort-specific change 

in the mean retirement age relative to the cohort of 1937.  The mean retirement age is defined as 

the sum of products of each age and the probability of retirement at that age, but Mastrobuoni 

showed that, under certain assumptions, the cohort-specific change in the retirement age can be 

calculated by adding the cohort’s beta-coefficient estimates for ages 62 to 65.  Finally, in the 

third step, the difference between the post- and pre-intervention trends in the retirement age is 

calculated as a weighted average of the changes in the mean retirement age, which the author 

interprets as the difference in retirement age trends caused by the Social Security reform. 

We take issue with two assumptions underlying these estimates.  First, the calculation of 

the change in the mean retirement age in the second step assumes that the change in the 

retirement probabilities at ages 61 or younger and 66 or older relative to the 1937 cohort is zero.  

However, this assumption almost certainly does not hold because there are clear trends in 

retirement probabilities at ages 61 and younger (see figures 1 and 2).  This would bias the 

estimate of the change in the retirement age based only on retirement probabilities at ages 62 to 

65.  To test this assumption, we replicate the author’s estimates with an expanded age range.  If 

the assumption holds, we expect little sensitivity in the estimates; otherwise, the calculation of 

changes in the mean retirement age requires summation over a wider range of possible retirement 

ages.  Because our results indicate that the latter is likely the case, we eschew the mean 

retirement age as a measure of retirement status and focus on retirement rates, which are more 

easily separable by age. 
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The second assumption that might not hold is the assumption that the counterfactual 

retirement rate can be constructed based on the pre-intervention trend and observed factors that 

affect the retirement rate.  For this assumption to hold, one would have to control for all the 

factors whose effect on the retirement rate changed over the observed period.  Considering the 

current state of understanding of trends in the retirement rate, however, it is unlikely that we are 

able to do that.  Because of the limited knowledge of the processes that shape labor force 

participation at older ages, it is likely that our list of factors that affect it is incomplete.  

Moreover, even some factors on the list, including life expectancy, income and wealth 

inequality, and social norms other than those related to retirement age (e.g. social norms about 

women in labor force), affect retirement rate in a way that is difficult to estimate parametrically.  

We address this issue by using a difference-in-difference design that allows us to construct 

counterfactuals based on a control group that was not affected by the changes in Social Security 

rules. 

In addition, we hope to improve on Mastrobuoni’s estimates by using more recent data.  

At the time of his study, data were available for only four single-year birth cohorts that were 

affected by the reform (people born between 1938 and 1941), which might not be sufficient to 

identify changes in trends with the required precision.  To test the sensitivity of trend estimates, 

we replicate the estimation on an expanded dataset that includes surveys from January 1975 to 

January 2019, which adds the 1942 to 1953 cohorts.  We replicate only the specification that the 

author calls “restricted” and does not include additional controls. 

Our difference-in-difference framework allows us to compare pre- and post-intervention 

trends in retirement rates between the treatment and control groups.  In an ideal case, the two 

groups would have the same composition and the treatment would be randomly assigned.  This 

would allow us to assume that the post-intervention trend in the control group is the same as the 

counterfactual post-intervention trend in the treatment group.  Consequently, the difference in the 

changes in outcomes between the treatment and control groups represents the average treatment 

effect. Most designs, including ours, do not rise to this high standard, which is why we test our 

assumptions and the sensitivity of our estimates. 

Our treated groups consist of individuals ages 62 to 65 who are eligible for Social 

Security benefits; the control groups include individuals ages 58 to 61 who are not yet eligible 

for the benefits.  We make two strong assumptions.  First, we assume that retirement behavior at 
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pre-eligibility ages is not affected by changes in the benefit amount.  Second, we assume that 

pre-intervention trends in the retirement rate are the same in the control and treatment groups 

and, consequently, that in the absence of an intervention they would have remained the same in 

the post-intervention period.  The first assumption is difficult to test, but we draw some 

confidence from the Social Security Board of Trustees who make the same assumption in their 

annual report (Office of the Chief Actuary, 2019, p. 63).  We test the second assumption by 

estimating a model augmented by a linear trend. 

Our design is similar to the one developed by Song and Manchester (2007) who used it to 

estimate the effect of changes in Social Security rules on the rate of claiming Social Security 

benefits.  Their treatment group included individuals ages 62 to 70 and the control group 

consisted of individuals ages 71 and 72 who were not affected by changes in the Social Security 

rules.  Their design implies the same assumptions as ours: that claiming behavior is not affected 

at ages for which benefits did not change, and the claiming trends in the treatment and control 

groups would have been the same in the absence of the benefits change. 

Unlike Song and Manchester, our design uses birth cohorts to define pre- and post-

intervention periods, rather than calendar years.  This approach has a couple of advantages. First, 

it allows us to control for cohort effects, which ensures that, aside from age, demographic 

characteristics of the treatment and control groups are the same.4  Second, because the treatment 

is defined with respect to birth year rather than calendar year, intervention timing varies with 

age.  For example, the treatment starts in 2000 for 62-year-olds, in 2001 for 63-year-olds, etc.  

Using birth cohort as the time dimension removes this dependency and avoids the complications 

associated with staggered treatment (see Goodman-Bacon, 2019). 

The choice of the control group has to reconcile two opposing requirements.  To ensure 

similarity with the treatment group, the control group ages should be as close as possible to the 

treatment group ages.  But to ensure that a change in Social Security rules does not affect the 

retirement decisions of people in the control group, their ages should be sufficiently distant from 

the eligibility ages.  There is no way for us to determine the optimal trade-off between these two 

requirements, which is why we provide estimates for a range of control ages (58 to 61) and 

conduct a sensitivity analysis. 

 
4 This is not entirely true because of differences in mortality rates between population groups.  However, it is a good 

approximation because our treatment and control ages are relatively close.  
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Rather than using individual-level observations, we aggregate them by age and birth year.  

In this, we follow a suggestion by Angrist and Pischke (2009) who caution about the risk of 

underestimating standard errors and consequently overstating the precision of estimates, when 

individual-level residuals are correlated at the group level.  In our case, the main source of such 

correlation is the treatment, which varies by age and cohort.  Denoting the average retirement 

rate for cohort c at age a with 𝑦𝑎𝑐 and treatment ages with 𝑎𝑇, which include ages 62 to 65, our 

nonparametric specification is: 

𝑦𝑎𝑐 = 𝜆𝑎 + 𝛾𝑐 + 𝛽𝑐
𝑎𝑇𝕀(𝑐 ≥ 1938 ⋀ 𝑎 = 𝑎𝑇 ) + 휀𝑎𝑐  

(

2) 

The 𝛽𝑐
𝑎𝑇  coefficients represent the cohort-specific effects of the Social Security reform on 

the retirement rates at treatment age 𝑎𝑇.  We estimate this equation separately for each treatment 

age, and calculate the mean �̂� 
𝑎𝑇 as the mean effect of the reduction in benefits on the retirement 

rate for age 𝑎𝑇. 

In a parametric version of the model, we define the treatment 𝐷𝑎𝑐  as the percentage 

increase in the benefit reduction for cohort c born in 1938 or later at age a relative to the benefit 

reduction for the 1937 cohort at the same age.  Figure 3 shows values of 𝐷𝑎𝑐 , and the following 

equation represents the econometric specification: 

𝑦𝑎𝑐 = 𝜆𝑎 + 𝛾𝑐 + 𝛽 𝐷𝑎𝑐 + 휀𝑎𝑐 
(

3) 

The coefficient 𝛽 can be interpreted as the percentage-point reduction in the retirement 

rate due to a one-percent increase in the benefit reduction. 

A common problem with using ordinary least squares (OLS) to estimate this type of 

model is the serial correlation among predictors, and in particular in the treatment variable.  As 

Bertrand, Duflo, and Mullainathan (2004) point out, a predictor with positive serial correlation 

can cause a substantial underestimation of standard error.  To deal with this problem, we use the 

randomization inference, an approach suggested by the authors.  We generate 200 random 

permutations of the treatment across ages and cohorts for each gender, then estimate the above 

equations for each permutation.  We then sort the estimates by size and use the 5th and 195th as 

the interval in which 95 percent of estimates would fall under the null hypothesis that reducing 

early claiming benefits has no effects on retirement behavior.  If the point estimate falls outside 

of the interval, the null hypothesis can be rejected with 95 percent certainty. 
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One of the main concerns in any difference-in-difference design is the validity of the 

common trend assumption. For equations (2) and (3) to be a valid model for estimation of the 

treatment effect, it must be the case that the retirement rates for the control and treated groups 

were following the same trend before the intervention.  Only then can we assume that they would 

have followed the same trend after the intervention in the absence of the treatment and conclude 

that the difference in post-intervention trends was caused by the intervention. To test this 

assumption, we estimate equation (4), which expands equation (2) by adding an interaction 

between a linear trend t and the treatment-age dummy variable.  

𝑦𝑎𝑐 = 𝜆𝑎 + 𝛾𝑐 + 𝛽𝑐𝕀(𝑐 ≥ 1938 ⋀ 𝑎 = 𝑎𝑇 ) + 𝜃𝕀(𝑎 = 𝑎𝑇)𝑡 + 휀𝑎𝑐 
(

4) 

A rejection of the null hypothesis that coefficient 𝜃 is zero would indicate that the 

common trend is not a valid assumption.5  Related to the common-trend assumption is the 

assumption about the functional form of the dependent variable (Kahn-Lang and Lang, 2020).  

For example, two groups could have a common trend in the retirement incidence rate but 

diverging trends in the hazard rate.  This is why we estimate the above models for all three 

measures of retirement status. 

A potential problem with the cumulative retirement rate as a measure of retirement status 

at a given age is that it depends not only on retirement status at that age but also on retirement 

statuses at all younger ages.  For example, the cumulative retirement rate at 62 equals the 

cumulative rate at 61 plus the incidence rate at 62.  An increase in the cumulative rate at 61 will 

automatically raise the cumulative retirement rate at 62 even if the rate at which 62-year-olds 

exit the labor force has not changed.  It is not clear that this a desirable feature of an age-specific 

measure of retirement status, but this feature may also adversely affect our difference-in-

difference design by effectively eliminating the comparison with the control group.  The 

estimator of the average treatment effect on the cumulative retirement rate at 62 that uses age 61 

as the control group effectively calculates the difference between pre- and post-intervention 

differences in the cumulative retirement rates at ages 62 and 61.  But, because the cumulative 

rate at 62 additively includes the cumulative rate at 61, the cumulative rates at age 61 cancel each 

other for each cohort, and the remaining terms represent the difference in the retirement rate at 

 
5 As Bilinski and Hatfield (2020) point out, a failure to reject, on the other hand, does not guarantee that the 

assumption is valid. 
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age 62 between post- and pre-intervention cohorts, effectively collapsing the difference-in-

difference design into an interrupted-time-series design.6  Because the estimator relies only on 

the difference between pre- and post-intervention trends and not on the comparison with the 

control group, it requires a stronger assumption that the pre-intervention trend would have 

remained the same in the post-intervention period in the absence of the intervention.  This is why 

we prefer the other two measures over the cumulative retirement rate. However, we present 

results based on all three measures to demonstrate differences in how the choice of a measure 

affects estimates and to allow comparison with other studies.  The above criticism would not 

apply if we applied a non-homomorphic transformation, such as the logarithmic or logit 

functions, to the cumulative retirement rate.  We estimated the above models based on these two 

transformations too, but tests rejected the common trend hypothesis and we do not report those 

results in the paper. 

 

Results 

We start by testing Mastrobuoni’s results (2009) for sensitivity to birth cohorts included 

in the sample and to ages included in the estimation of average retirement age.  Table 1 contains 

the estimates of the change in the average retirement age for cohorts born in 1938 and later.  This 

is the final result of the three-stage estimation that starts with an estimation of equation (1), the 

summation of 𝛽𝑎,𝑐 by cohort for ages 62 to 65 to obtain cohort-specific changes in the average 

retirement age, and averaging these changes to obtain the change in trends in the average 

retirement age for cohorts born in 1938 and later.  The first two columns show results of our 

replication of Mastrobuoni’s estimates for the restricted case without controlling for individual 

characteristics; the last two columns show the estimates obtained by using the same method but 

on an expanded dataset that includes more recent cohorts.  We were not able to reproduce the 

author’s results exactly, but considering that all our intermediate results are relatively close to the 

author’s, we are reasonably confident that we faithfully reproduced all the key aspects of his 

method.7  Our estimates on the extended sample show that results are sensitive to the range of 

 
6 If we denote cumulative and incidence rates for age 𝑎 and a given cohort as 𝑦𝑎  and 𝑖𝑎, then 𝑦62 = 𝑦61 + 𝑖62. If we 

add superscripts 0 and 1 to denote pre- and post-intervention periods, the average treatment effect at 62 with control 

age 61 is Δ = (𝑦62
1 − 𝑦62

0 ) − (𝑦61
1 − 𝑦61

0 ) = (𝑦61
1 + 𝑖62

1 − 𝑦61
0 + 𝑖62

0 ) − (𝑦61
1 − 𝑦61

0 ) = 𝑖62
1 − 𝑖62

0 . 
7 Our estimated change in the trend for women is 0.65 and not statistically significant, comparing to the author’s 

0.88 and statistically significant at the 95 percent level (Mastrobuoni, 2009, table 5, panel A, column 5).  Our 
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birth cohorts included in the sample.  The inclusion of more recent cohorts significantly changed 

the estimates but not in the expected direction.  The extended sample includes birth cohorts that 

were increasingly more affected by the Social Security reforms as the early claiming reduction 

increased for later cohorts.  For example, a person born in 1938 who claimed at age 62 would 

have received 1 percent lower benefits than a person born a year earlier who claimed at the same 

age, while someone born in 1943 claiming at the same age would receive six percent lower 

benefits.  Assuming that the main effect on the retirement age comes from this reduction in 

benefits, we expected that including more recent cohorts would increase the mean effect on the 

retirement age.  Instead, the estimates for both men and women significantly decreased when we 

included more recent cohorts.  We interpret this result as evidence that data on only three post-

intervention cohorts were insufficient for estimation of a change in trend. 

Our second sensitivity test looks at the second step in Mastrobuoni’s estimation that 

estimates a change in the mean retirement age.  Under the assumption that there were no changes 

in retirement rates at ages 61 or younger and ages 66 or older, the author calculates changes in 

the mean cohort-specific retirement age based only on retirement rates at ages 62 to 65.  Those 

assumptions produce the change in the retirement age trend discussed above and shown again in 

first two columns of table 2.  Under a relaxed assumption that includes ages 55 to 65 in the 

estimation, the resulting changes in the retirement age trend, which are shown in the last two 

columns of the same table, are more than 50 percent larger.  This indicates that the assumption of 

no change in retirement rates at ages younger than 62 and older than 65 might be too strong. 

We now turn to our results, but before we show the estimates of the models described in 

the previous section we start with the most intuitive way of estimating treatment effects: as the 

difference between the post- and pre-intervention outcomes for the treated group minus the 

difference between the post- and pre-intervention outcomes for the control group.  These results 

based on retirement incidence rates at treated ages 62 to 65 and control ages 58 to 61 are shown 

in table 3.  The “Pre” and “Post” columns show the average retirement rate for the 1920 to 1937 

cohorts and the 1938 to 1955 cohorts, respectively, and the “Post-Pre” column shows the 

difference between these two columns indicating the change in retirement rate after the 

intervention.  According to this column, the average retirement rate for men changed 

 
estimate for men, 1.09, is slightly higher than 0.94 by the author and statistically significant at the same level 

(Mastrobuoni, 2009, table 5, panel B, column 5). 
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substantially after the intervention only at age 62, when it fell by 5.1 percentage points, or one-

third, from 14.7 percent to 9.6 percent.  Changes at other ages were less than one percentage 

point.  The results are different for women, whose retirement rates increased by one percentage 

point at ages 58, 59, 61, and 64, decreased by one percentage point at age 62, and remained 

relatively constant at other ages. 

The average treatment effect for each treated age can be calculated with respect to each 

control age as the difference in the values in the “Post-Pre” column between the treated and 

control ages.  For example, the treatment effect for 62-year-old men based on control age 61 

equals the difference between -5.1 and -0.3, or -4.8. Based on other control ages, the treatment 

effect for men at this age ranges from -5.4 to -4.5.  The treatment effect for men ages 63 to 65 is 

less than one percentage point.  For women, the treatment effect is also the strongest at age 62, 

but it is smaller than for men of the same age.  Depending on control age, it ranges from -2.2 to -

1.3 percentage points.  At age 63, the treatment effect is about -1 percentage point based on 

control ages 58, 59, and 61, and only -0.3 percentage points based on control age 60.  The 

treatment effect for age 64 varies from zero to 0.9 percentage points, and for age 65 from -0.4 to 

0.5 percentage points. 

Even though these calculations, under our identifying assumptions, provide unbiased and 

intuitive estimates of the magnitude of the changes in retirement rates, they do not allow 

statistical inference about the estimates’ precision.  For that, we use OLS regression with 

randomization inference.  Our estimates of equation (2) for treatment ages 62 to 65 and control 

ages 58 to 61 are presented in tables 4, 5 and 6.  Estimates in table 4 use the retirement incidence 

rate, those in table 5 use the retirement hazard rate, and those in table 6 use the cumulative 

retirement rate.  Each table contains estimates for men and women.  Each row represents 

estimates for one combination of the treatment and control age.  The “treatment effect” column 

contains point estimates of the effect.  The “placebo interval” column shows the interval that was 

generated by the randomization inference process, which estimated equation (2) 200 times, each 

time with a permutated treatment variable.  The interval, which was constructed by using the 5th- 

and 195th-largest estimates as its endpoints, denotes the range of values in which estimates would 

land 95 percent of the time if the treatment was placebo.   

The magnitude of the estimated effects shown in table 4 is similar to those obtained by 

simple differencing shown in table 3, but the placebo interval shows that the treatment effect for 
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men is statistically significant only at age 62 (for all control ages).  For all other treatment ages, 

the point estimate lies within the placebo interval indicating that it was statistically 

indistinguishable from a placebo.  The estimated effect on the retirement rate at age 62 represents 

a 30 to 35 percent reduction relative to pre-1938 cohorts.  The women’s retirement rate at age 62 

decreased by between 1.7 and 2.5 percentage points, or around 20 percent, after the change in the 

early claiming benefit reduction, and the estimates are statistically significant for all control ages.  

The treatment effect on women’s retirement rate is also significant at age 63 for control ages 59 

and 61. 

The estimated effects on the retirement hazard rate, which are shown in table 5, are 

statistically significant at all treatment ages for both men and women, at least for some control 

ages, but they are largest and most consistently significant for ages 62 and 65.  For men, the 

retirement hazard rate at 62 decreased by between 8.1 and 9.8 percentage points, depending on 

the control age.  The relative magnitude of these changes is similar to the magnitude obtained for 

the incidence retirement rate, around 30 percent.  At 63, the effect is significant only for control 

age 59.  The estimates at 64 are statistically significant for all control ages and range from -5.7 to 

-4.2 percentage points.  For age 65, the estimated effects are large and significant, ranging from -

8.7 to 6.4 percentage points.  For women, the retirement hazard rate decreased by between 5 and 

7.2 percentage points at age 62; between 3.5 and 6.8 percentage points at age 63; and between 

5.6 and 8.7 percentage points at 65.  At 64, the estimated effect was around -3 percentage points 

and statistically significant for control ages 58 and 59, and statistically insignificant for control 

ages 60 and 61. 

The estimates based on the hazard and incidence rate are consistent at age 62 but they 

diverge for older ages.  Part of the reason for these differences is that the hazard rate is a 

composite measure that depends on the retirement incidence rate in its numerator and the 

retirement survival function in the denominator.  Even if the retirement incidence rate at a given 

age does not change, a change in incidence rates at younger ages would change the survival 

function and therefore the denominator of the hazard rate.  For example, table 4 shows that the 

effect on the incidence rate was significant at age 62 but not at 63.  This reduction in the 

incidence rate at age 62 decreased the cumulative rate at the same age and increased the 

retirement survival function, which is the denominator of the hazard rate at age 63.  Even though 

there was no effect on the incidence rate at age 63, its decrease at 62 can cause the hazard rate at 
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63 to decrease.  This dependence of the hazard rate on retirement status over a range of ages is 

one reason why we prefer the incidence rate over it; the other reason is the higher volatility of the 

hazard rate. 

Results obtained by using the cumulative retirement rate, which are shown in table 6, are 

fundamentally different from the results obtained by using the other two functional forms.  This 

is especially clear from the estimates of changes in women’s cumulative retirement rate, which 

are not statistically significant at any age, even though changes in both the incidence and hazard 

rates were statistically significant at age 62 for all control ages.  One reason for this is the 

additivity of cumulative retirement rate and its elimination of the control group described in the 

previous section.  As table 3 shows, the decrease in the incidence rate for 62-year-old women 

was small, only 1.1 percentage point relative to the pre-intervention rate.  But because there was 

a commensurable increase in incidence rates at all but one control age, the change relative to the 

control group was 2 percentage points.  In the case of the cumulative retirement rate, the only 

comparison being made is in the incidence rate between pre- and post-intervention periods, and 

this change was relatively small.  The other reason is the steady downward trend of women’s 

cumulative retirement rates, which creates a large variation in the sample resulting in wide 

placebo intervals that are much wider than those estimated for men.  In contrast, there is much 

less variation in the incidence and hazard rates, and consequently placebo intervals estimated 

with these two measures for women are in most cases narrower than those for men. 

We now examine the validity of the assumption that pre-intervention trends in control 

and treatment groups were parallel by estimating equation (4) and testing the hypothesis that 𝜃 

equals zero.  Tables 7 contains p-values for the test of the common trend assumption for the three 

functional forms, treatment ages 62 to 65 and control ages 56 to 61.  For each functional form of 

the dependent variable and each combination of control and treatment ages, the value in the cell 

is the p-value of a test that the coefficient 𝜃 in equation (4) is zero.  When the p-value is less than 

5, the common trend hypothesis can be rejected at the 95 percent significance level.  For men, 

the retirement incidence rate passes the test for all combinations of treatment and control age 

with p-values well above the 5-percent threshold.  The retirement hazard rate does not perform as 

well, having the common trend hypothesis rejected for two combinations of treatment and 

control ages, but the p-values for other combinations are mostly high.  The cumulative retirement 

rate, however, fails the test for most cases.  The test fails to reject the common-trend hypothesis 
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only for treatment age 62 and all control ages, and treatment age 63 and control age 61.  For all 

other combinations, the p-value is less than 5.  The test results are different for women, for 

whom the cumulative retirement rate yields the highest p-values and the test failed to reject the 

common-trend hypothesis for any combination of treatment and control ages.  The outcome is 

similar for the incidence rate, although the p-values in a couple of cases are close to 5 percent.  

The common trend hypothesis was rejected only in the case of the retirement hazard rate in four 

combinations of treatment and control ages. 

Finally, we show estimates of the parametric model (3) based on the retirement incidence 

rate.  The estimates of the parameter β in equation (3), which are shown in table 9, represent the 

average effect on the retirement incidence rate of a 1percent increase in the benefit reduction.  To 

calculate the total effect for a particular age and cohort, this estimate must be multiplied by the 

benefit reduction for that age and cohort. For example, the estimated effect for 62-year-old men 

with control age 61 is a 0.75 percentage point decrease in the retirement rate per 1 percent of 

increase in benefit reduction.  Because beneficiaries born in 1943 and claiming at 62 would have 

their benefits cut by 6.25 percent more than their counterparts born in 1937, men’s retirement 

rate decreased by 4.7 percentage points due to the benefit reduction. 

The sign and significance of estimates is almost identical to the nonparametric estimates.  

The treatment effect is negative and statistically significant for men and women only at age 62.  

The estimates lie within the placebo interval for all other age combinations except for treatment 

age 64 and control age 60 for women.  To compare these estimates to those from the non-

parametric model, we can calculate the average increase in the early claiming reduction across 

the 1938 to 1955 cohorts and multiply it by the parametric estimate of the effect of a 1 percent 

increase.  For example, the average increase in the benefit reduction for claiming at 62 for these 

cohorts was 5.4 percent.  Multiplying it by -0.75 estimate for 62-year-old men yields an average 

incidence rate change of -4.1 percentage points.  The equivalent non-parametric estimate is -4.8 

percentage points.  Taking other control ages into account, the estimates range from -5.1 to -3.9 

for the parametric model and -5.8 to -4.8 for the nonparametric model.  For women of the same 

age, these ranges are -2.3 to -1.2 in the parametric case, and -2.7 to -1.7 in the nonparametric 

case.  The proximity of the estimates based on two different models provides some assurance 

that the models are not misspecified.  
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Conclusion 

A potential future increase in the Social Security FRA is a commonly discussed policy in 

the academic literature and among policy makers.  Our findings have important implications for 

its evaluation.  In addition to reducing Social Security outlays, increasing the FRA has the 

potential to increase labor force participation among older workers, which, in turn, could help 

grow the economy and increase tax revenues.  Modeling these effects hinges on the assumption 

about the impact that such a policy would have on labor force participation.  This paper 

contributes a new perspective on this relationship by studying the effect on retirement behavior 

of the 1983 Social Security reform, which raised the FRA.  In addition to providing a set of 

estimates based on the latest data, we also examine different methodological choices and their 

consequences for the analysis.  We adopt a difference-in-difference estimation as our framework 

and, within it, explore three functional forms, compare parametric and nonparametric model 

specifications, and examine how the choice of a control group affects the estimates.   

We found that functional form is a particularly important choice that affects conclusions 

in fundamental ways.  The analysis based on the incidence retirement rate indicates that the 

reform reduced retirement rates only at age 62 for both men and women.  Results based on the 

hazard rate are also symmetrical with respect to gender, but the effects are significant for all four 

affected ages that we analyzed.  In contrast, when we use cumulative retirement rate as a 

measure, the effects were large and significant for men at all four ages, but insignificant for 

women.  Based on our literature review, the most commonly used measures are the cumulative 

retirement rate and the retirement hazard rate, but there is little guidance for selecting one or the 

other.  However, our analysis suggests that the incidence rate provides more useful insight into 

changes in retirement behavior.  It measures the share of the population retiring at a single age 

and is not affected by changes at other ages, as is the case with the other two measures.  In 

addition, using the incidence rate yields the most precise estimates (because of narrow placebo 

intervals and low variation of estimates across control ages) and the highest p-values in our test 

of the common-trend hypothesis.  Finally, we provide parametric estimates of the effect of an 

increase in FRA on retirement rates, which are more suitable for use in projections and 

simulations. 
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Figures 

Figure 1. Cumulative Retirement Rates for Men by Age and Birth Year 

 
Notes: Lines represent predicted values from regressions of retirement rates on birth-year dummies.  The vertical 

line represents the 1938 birth year. 

Source: Current Population Survey (1978-2019). 
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Figure 2. Cumulative Retirement Rates for Women by Age and Birth Year 

 
Notes: Lines represent predicted values from regressions of retirement rates on birth-year dummies.  The vertical 

line represents the 1938 birth year. 

Source: Current Population Survey (1978-2019). 
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Figure 3. Increase in Early Claiming Benefit Reduction Due to the Social Security Reform 

 
Notes: Increase in benefit reduction at each age is calculated relative to early claiming benefit reduction for 

recipients born in 1937.  For example, a person born in 1937 who claimed at 62 would receive 80 percent of their 

full PIA.  A person born in 1943 claiming at the same age would receive only 75 percent of their full PIA, or 6.25 

percent less, which represents the percentage increase in reduction. 
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Tables 

Table 1. Estimates of the Changes in Retirement Age Trends are Sensitive to Included Birth 

Cohorts 

 

Birth cohorts 1928-1941  1928-1953 

Men Women  Men Women 

1.087** 0.650  0.556* 0.387 

(0.520) (0.474)  (0.320) (0.291) 

Notes: Standard errors in parentheses, ** p<0.05, * p<0.1.  Estimation using methods by Mastrobuoni (2009) based 

on two samples that include different ranges of birth cohorts.  The results are calculated based on estimates of 𝛽𝑎,𝑐, 

which are first summed by cohort for ages 62 to 65 to obtain the cohort-specific change in the average retirement 

age.  These changes in the average retirement age are then averaged to obtain the change in trends for cohorts born 

in 1938 and later. 

 

Table 2. Estimates of the Changes in Retirement Age Trends are Sensitive to Included Ages 

 

Ages 62-65  Ages 55-65 

Men Women  Men Women 

1.087** 0.650  1.670** 1.084 

(0.520) (0.474)  (0.691) (0.663) 

Notes: Standard errors in parentheses, ** p<0.05, * p<0.1.  Estimation using methods by Mastrobuoni (2009) based 

on two who estimated the change in cohort-specific average retirement age as the sum of 𝛽𝑎,𝑐 coefficients for ages 

62 to 65, under the assumption that these coefficients for ages outside of the range are zero.  The estimates for the 

55-65 age range relax this assumption and include ages 55 to 61. 
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Table 3. Average Retirement Incidence Rates and Average Treatment Effects 

 

     Average Treatment Effect 

 Age Pre Post 

Post - 

Pre 61 60 59 58 

Men        

 58 4.8 5.0 0.2     

 59 4.8 5.1 0.3     

 60 7.1 6.6 -0.6     

 61 6.6 6.3 -0.3     

 62 14.7 9.6 -5.1 -4.8 -4.5 -5.4 -5.2 

 63 8.7 8.6 -0.1 0.2 0.5 -0.4 -0.2 

 64 7.7 7.3 -0.4 -0.2 0.1 -0.8 -0.6 

 65 9.8 9.5 -0.3 0.0 0.3 -0.6 -0.5 

Women        

 58 4.7 5.8 1.1     

 59 5.3 6.4 1.1     

 60 6.5 6.7 0.2     

 61 6.2 7.2 1.0     

 62 9.5 8.4 -1.1 -2.1 -1.3 -2.2 -2.2 

 63 7.2 7.0 -0.1 -1.1 -0.3 -1.2 -1.2 

 64 6.2 7.3 1.1 0.1 0.9 0.0 0.0 

 65 7.5 8.2 0.6 -0.4 0.5 -0.4 -0.4 

Notes: Column "Pre" shows the average retirement rate for 1920 to 1937 cohorts, column "Post" for cohorts 1938 to 

1955, and column "Post-Pre" shows the difference between first two columns.  The four columns under "Treatment 

Effect" show the difference between the values in the "Post-Pre" column for the treatment age in the intersecting 

row and control age in the intersecting column.  E.g. value -5.6 for treatment age 62 and control age 61 is the 

difference of -6.6 in the "Post-Pre" column at age 62 and -1.0 at age 61.  Sample contains cohorts 1920 to 1955. 
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Table 4. Nonparametric Estimates of the Treatment Effect on the Retirement Incidence Rate 

 

  Men  Women 

Age 

Control 

age 

Treatment 

Effect Placebo Interval 

 Treatment 

Effect Placebo Interval 

62 58 -5.51 [-2.70, 2.49]  -2.22 [-0.66, 1.49] 

 59 -5.77 [-3.00, 2.07]  -2.45 [-0.98, 1.57] 

 60 -4.76 [-2.99, 1.89]  -1.69 [-0.81, 1.51] 

 61 -4.82 [-2.90, 1.87]  -2.69 [-0.68, 1.56] 

63 58 -0.16 [-3.36, 1.90]  -0.98 [-1.04, 1.75] 

 59 -0.40 [-3.06, 1.57]  -1.25 [-0.84, 1.49] 

 60 0.32 [-2.86, 1.44]  0.02 [-0.95, 1.42] 

 61 0.30 [-3.23, 1.64]  -1.26 [-1.01, 1.73] 

64 58 -0.64 [-1.73, 1.75]  0.36 [-0.62, 1.58] 

 59 -0.77 [-1.59, 1.73]  -0.09 [-1.30, 1.30] 

 60 0.00 [-1.99, 1.31]  1.04 [-1.03, 1.18] 

 61 -0.07 [-1.58, 1.70]  0.22 [-1.07, 1.73] 

65 58 -0.56 [-2.12, 5.12]  -0.38 [-1.05, 3.56] 

 59 -0.63 [-2.13, 4.16]  -0.47 [-1.06, 4.19] 

 60 0.52 [-1.63, 4.80]  0.43 [-1.68, 3.92] 

 61 0.22 [-2.10, 5.15]  -0.47 [-0.91, 4.33] 

Notes: The average treatment effect was estimated as the average of β coefficients in equation (2).  The placebo 

interval represents the interval between 2.5 and 97.5 percent of the distribution of estimates generated by 

randomization inference.  A point estimate outside of that interval indicates a statistically significant effect at the 95 

percent level.  The sample includes people born between 1920 and 1955. 
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Table 5. Nonparametric Estimates of the Treatment Effect on the Retirement Hazard Rate 

 

  Men  Women 

Age 

Control 

age 

Treatment 

Effect Placebo Interval 

 Treatment 

Effect Placebo Interval 

62 58 -9.31 [-3.22, 3.14]  -7.24 [-2.03, 2.97] 

 59 -9.82 [-3.37, 2.85]  -6.62 [-1.79, 3.01] 

 60 -9.17 [-3.46, 2.63]  -5.01 [-1.73, 2.79] 

 61 -8.12 [-2.93, 2.61]  -6.47 [-1.66, 2.93] 

63 58 -3.64 [-4.94, 2.59]  -6.78 [-1.92, 3.53] 

 59 -4.47 [-4.39, 3.00]  -6.27 [-1.90, 2.83] 

 60 -4.39 [-5.32, 2.22]  -3.48 [-2.17, 2.62] 

 61 -3.18 [-4.93, 2.84]  -5.64 [-2.29, 3.53] 

64 58 -5.40 [-2.38, 2.33]  -2.98 [-1.82, 2.56] 

 59 -4.47 [-2.31, 2.30]  -3.06 [-2.78, 2.38] 

 60 -5.66 [-3.23, 1.93]  -0.10 [-2.81, 1.56] 

 61 -4.23 [-2.35, 2.22]  -1.92 [-2.59, 2.56] 

65 58 -8.65 [-3.10, 3.39]  -8.69 [-2.53, 3.41] 

 59 -6.97 [-3.02, 3.04]  -8.28 [-3.49, 2.96] 

 60 -7.01 [-2.61, 3.22]  -5.60 [-2.80, 3.04] 

 61 -6.42 [-2.78, 2.98]  -7.02 [-2.84, 3.32] 

Notes: The average treatment effect was estimated as the average of β coefficients in equation (2).  The placebo 

interval represents the interval between 2.5 and 97.5 percent of the distribution of estimates generated by 

randomization inference.  A point estimate outside of that interval indicates a statistically significant effect at the 95 

percent level.  The sample includes people born between 1920 and 1955. 

 

  



 27 

Table 6. Nonparametric Estimates of the Treatment Effect on the Cumulative Retirement Rate 

 

  Men  Women 

Age 

Control 

age 

Treatment 

Effect Placebo Interval 

 Treatment 

Effect Placebo Interval 

62 58 -8.68 [-1.90, 2.83]  -1.10 [-6.51, 3.13] 

 59 -8.14 [-2.09, 3.64]  -1.92 [-5.65, 3.43] 

 60 -7.00 [-1.43, 3.18]  -1.02 [-6.23, 4.32] 

 61 -5.89 [-1.46, 2.31]  -1.59 [-5.50, 3.35] 

63 58 -10.01 [-3.16, 3.27]  -0.07 [-6.08, 2.64] 

 59 -9.47 [-3.44, 4.02]  -0.89 [-6.16, 1.49] 

 60 -8.33 [-2.70, 3.78]  0.00 [-5.99, 2.99] 

 61 -7.23 [-2.75, 3.03]  -0.56 [-5.50, 4.40] 

64 58 -10.74 [-3.65, 3.57]  0.15 [-7.43, 3.42] 

 59 -10.16 [-3.78, 3.53]  -0.74 [-6.46, 3.65] 

 60 -9.33 [-3.25, 3.90]  0.08 [-6.21, 3.26] 

 61 -8.10 [-3.30, 2.79]  -0.48 [-6.36, 5.40] 

65 58 -11.79 [-3.64, 3.22]  -0.69 [-7.05, 2.56] 

 59 -11.20 [-4.28, 4.01]  -1.56 [-6.36, 3.94] 

 60 -10.43 [-3.94, 4.00]  -0.74 [-7.04, 5.24] 

 61 -9.31 [-3.84, 3.21]  -1.39 [-6.97, 4.12] 

Notes: The average treatment effect was estimated as the average of β coefficients in equation (2).  The placebo 

interval represents the interval between 2.5 and 97.5 percent of the distribution of estimates generated by 

randomization inference.  A point estimate outside of that interval indicates a statistically significant effect at the 95 

percent level.  The sample includes people born between 1920 and 1955. 
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Table 7. P-values for a Common Trend Test, Men 

 

 
Men  Women 

 
Control ages  Control ages 

Treatment age 58 59 60 61  58 59 60 61 

Retirement incidence rate 

  
     

 
62 78.79 69.65 91.13 96.98  20.68 8.13 91.14 36.67  
63 10.52 31.54 25.99 15.18  65.89 5.86 55.59 38.87  
64 51.87 61.98 50.61 50.51  92.88 6.60 63.87 57.32  
65 73.58 81.21 50.81 43.14  82.91 7.81 77.87 69.72 

Retirement hazard rate 

   
     

 
62 43.43 42.04 73.25 97.19  5.27 97.35 61.99 23.30  
63 4.45 32.74 18.40 11.79  81.51 3.40 80.25 1.46  
64 22.91 11.70 5.49 13.10  44.82 31.55 73.97 77.30  
65 17.14 8.60 2.26 7.46  0.10 9.65 1.60 17.66 

Cumulative retirement rate 

  
     

 
62 57.16 74.89 9.70 16.43  39.88 19.14 97.38 98.74  
63 1.05 0.76 0.51 17.61  42.18 23.01 92.32 93.82  
64 0.01 0.01 0.00 0.66  29.51 17.55 78.35 75.97  
65 0.00 0.00 0.00 0.00  82.53 68.18 21.94 48.31 

Notes: P-values in percentages for a test of the null-hypothesis that pre-intervention trend is the same for control and 

treated ages.  Control ages are 58 to 61.  Treated ages are 62 to 65. Pre-intervention birth cohorts are 1937 or earlier; 

post-intervention birth cohorts are 1938 or later.  For each combination of treated and control ages, a measure of 

retirement status was regressed on birth cohort dummies interacted with a dummy for treated age and post-

intervention cohorts, age dummies, cohort dummies, and linear trend interacted with a dummy for treated ages.  A 

value less than five indicates rejection of the common trend hypothesis. 
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Table 9. Parametric Estimates of the Treatment Effect on Retirement Incidence Rate 

 

  Men  Women 

Age 

Control 

age 

Treatment 

Effect Placebo Interval 

 Treatment 

Effect Placebo Interval 

62 58 -0.88 [-0.42, 0.40]  -0.31 [-0.25, 0.19] 

 59 -0.94 [-0.42, 0.39]  -0.35 [-0.29, 0.25] 

 60 -0.72 [-0.49, 0.50]  -0.23 [-0.20, 0.20] 

 61 -0.75 [-0.40, 0.45]  -0.42 [-0.18, 0.23] 

63 58 -0.09 [-0.34, 0.29]  -0.07 [-0.26, 0.22] 

 59 -0.14 [-0.26, 0.24]  -0.11 [-0.19, 0.18] 

 60 0.01 [-0.23, 0.27]  0.04 [-0.21, 0.18] 

 61 -0.01 [-0.32, 0.29]  -0.14 [-0.21, 0.27] 

64 58 -0.14 [-0.30, 0.33]  0.10 [-0.18, 0.19] 

 59 -0.18 [-0.25, 0.30]  0.03 [-0.20, 0.23] 

 60 -0.02 [-0.33, 0.28]  0.20 [-0.16, 0.16] 

 61 -0.04 [-0.27, 0.33]  0.04 [-0.27, 0.23] 

65 58 -0.11 [-0.31, 0.33]  0.04 [-0.25, 0.21] 

 59 -0.15 [-0.36, 0.34]  0.01 [-0.26, 0.28] 

 60 0.08 [-0.30, 0.30]  0.15 [-0.33, 0.28] 

 61 0.03 [-0.35, 0.33]  -0.03 [-0.27, 0.28] 

Notes: The average treatment effect is the point estimate of β in equation (3).  The placebo interval represents the 

interval between 2.5 and 97.5 percent of the distribution of estimates generated by randomization inference.  The 

sample includes people born between 1920 and 1955. 
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