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Abstract 

In this paper we use data from an evaluation of the Benefit Offset National 

Demonstration (BOND) to evaluate the efficacy of using comparative regression discontinuity 

(CRD) and regression discontinuity (RD) relative to a randomized controlled trial (RCT).  

BOND is a large demonstration intended to promote return to work among people with 

disabilities who receive Social Security Disability Insurance (DI).  RD is known as a relatively 

rigorous non-experimental method but produces imprecise results that apply to small 

populations.  CRD is a promising enhancement that addresses these issues.  The CRD and RD 

methods are potentially attractive because they can be used in contexts in which RCTs are 

challenging or infeasible.  However, the bias of findings from CRD and RD studies is unknown 

in the context of DI.  In this paper, we estimate CRD and RD models using simulated assignment 

to the BOND treatment group based on the duration of DI receipt at the start of BOND.  We 

compare the CRD and RD estimates to RCT estimates.  While the findings are not intended to 

revise the well-established evidence evaluating BOND, they can be used to help interpret the 

results from CRD and RD studies on other income support interventions for people with 

disabilities and to inform future study designs. 

Our paper has two key limitations.  First, our RD models are far from ideal.  This limits 

the degree to which our RD results generalize to what would be found with state-of-the art RD 

models.  Second, our results may not generalize to other populations.  Our analysis was based on 

BOND beneficiaries who were representative of the larger DI population at the time of BOND 

random assignment but may not reflect the DI population in more recent years.   

 

The paper found that: 

• Average bias from CRD and RD is generally below 0.02 standard deviations in absolute 

size for the groups of bias estimates we analyzed. 

• Given the precision that may be needed to evaluate interventions like BOND, the 

standard deviation of bias (after accounting for sampling error) is nontrivial, generally 

between 0.02 and 0.07 standard deviations for the groups of bias estimates we analyzed.  

 

  



 
 

The policy implications of the findings are: 

• When designing and interpreting results from CRD and RD evaluations, it is important 

to note that both produce biased estimates suggesting that their results be interpreted 

with more caution than those from an RCT with similar standard errors.  

• This bias appears to be larger in the presence of major non-linearities in the relationship 

between the running variable and the lagged outcome for CRD.  

 

 



Introduction 

There are numerous methods for evaluating the treatment effects of a policy intervention.  

Three of these are regression discontinuity (RD), an enhanced version of it, comparative 

regression discontinuity (CRD), and randomized control trials (RCTs).  RD can be used when 

treatment is allocated based on a cut point on a variable measured before the treatment happens.  

RD estimates impacts at that cut point.  CRD adds additional information to an RD model to 

facilitate estimating impacts away from the cut point.  RCTs can only be used when treatment is 

assigned randomly.  In all cases, impacts are estimated by comparing outcomes of the treated 

group to those who were not treated, though adjustments are needed in the cases of RD and 

CRD.  In some cases, practitioners have sufficient freedom in designing a given policy 

intervention to make it possible to use any of these evaluation methods.  In other cases, some 

methods may not be possible because of legal or practical barriers to assigning people to the 

treatment group.  Regardless, it is useful to know the efficacy of each method in estimating the 

average treatment effects.  It would help in the design of the study of a policy intervention (when 

possible) or help in interpreting the results, if the study design cannot be adjusted.   

That is the objective of this paper – to compare the efficacy of RD, CRD, and RCT 

methods in estimating the average treatment effects of a policy intervention.  We do this within 

the context of the Social Security Disability Insurance (DI) program.  The results can be used 

when making decisions about whether to use an RCT model rather than an RD or CRD and when 

interpreting RD and CRD results.  RD is well known for being a relatively rigorous non-

experimental method and CRD is a promising potential enhancement (Tang et al. 2017).  Both 

can expand opportunities to evaluate programs and policies by avoiding some of the challenges 

of RCTs.  Although RCTs are known to produce unbiased impact estimates with minimal 

assumptions, they are often difficult to implement.  For example, in a retrospective study where 

program participants were selected using a cut point on a continuous variable, an RCT would not 

be feasible because assignment happened prior to the study being designed, but RD or CRD 

analyses could be used.  Even in a prospective study, an RCT might not be feasible if there is a 

legal requirement that all eligible people are served; but, if one of the eligibility criteria is a cut 

point on a continuous variable, then RD or CRD could be feasible.   

The RCT, RD, and CRD methods differ substantially in the target populations, how 

individuals are assigned to treatment status, and how impacts are estimated.  In an RCT 
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researchers can obtain an unbiased estimate of the average treatment effect (ATE) by comparing 

outcomes of individuals who were randomly assigned to the treatment group with outcomes of 

those who were assigned to the control group.  In an RD model treatment status is determined 

entirely by a cut point on a pre-treatment variable known as a running variable.  Individuals on 

one side of the cut point are treated and those on the other side are not treated.  RD researchers 

can obtain a consistent estimate of the impact at the cut point by comparing outcomes for 

individuals in the treatment group to those in the comparison group.  To reduce the potential for 

bias due to differences in the running variable, the analysis sample is constrained to be close to 

the cut point and regression adjustment is often used for any remaining differences.  CRD is 

similar to RD but is designed to facilitate estimating an ATE instead of just an impact at the cut 

point.  It does this by incorporating data on individuals with values farther from the cut point and 

by adding in an additional outcome variable where no impacts are expected, for example a 

lagged outcome.1  An ATE can be estimated by comparing outcomes of the treatment group with 

those of the comparison group, adjusting for differences in the values of the running variable and 

the lagged outcome.   

The performance of RD versus RCTs has been studied in several contexts and at least 15 

times (Chaplin et al. 2018).  Most of these studies focused on education or politics, while one 

analyzed the impacts of a welfare program (Wing and Cook 2013).  Few studies have tested the 

efficacy of CRD; all those studies have all been in education (Kisbu-Sakarya et al. 2018; Tang et 

al. 2018; Tang et al. 2017) or health (Wing and Cook 2013).  However, none of these studies 

have investigated RD or CRD in the context of income support programs for people with 

disabilities.   

This paper analyzes the efficacy of RD and CRD in a specific policy context.  In 

particular, we focus on how these methods affect estimated impacts of an innovation that was 

assigned to a small randomly chosen treatment group of potential DI recipients in a selection of 

sites.  DI is the United States’ largest income support program for people with disabilities.  It 

provides cash benefits for people unable to engage in substantial gainful activity because of long-

lasting physical or mental impairments.  In 2018, the Social Security Administration (SSA), 

 
1 CRD models can also use outcome variables that cover both post- and pre-treatment periods as long as no impacts 

are expected for those variables (Tang et al 2017). 
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which oversees DI, paid benefits to almost 10 million DI beneficiaries with disabilities (SSA 

2019).2   

The innovation covered in this paper is SSA’s largest demonstration to date: the Benefit 

Offset National Demonstration (BOND).  SSA has conducted seven large-scale RCT 

demonstrations to test innovations to the DI program over the past nearly two decades.  BOND, 

which included nearly 1 million beneficiaries in the program’s evaluation, changed the way 

earnings affected DI cash benefit payments.  BOND control subjects were and still are governed 

by the laws current at the time of the BOND evaluation.  Under those laws SSA withheld the 

entire monthly benefit for a DI beneficiary if, after a 12-month period to test work, their earnings 

exceeded a programmatic threshold set annually.3  BOND treatment enrollees were instead 

subject to a $1 reduction in benefits for every $2 in earnings above the programmatic threshold.   

The BOND innovations had the potential to simultaneously increase earnings and decrease total 

DI benefit payments.  The evaluation of BOND found no statistically significant increases in 

earnings and yielded an increase, rather than a reduction in DI benefits (Gubits et al. 2018).  The 

demonstration and its evaluation were costly to implement from an administrative perspective 

but saved the DI trust fund money relative to implementing the innovation without first testing it, 

given the increase in average DI benefit payments that was found.  In this analysis, we 

investigate how biased results from an evaluation of BOND might have been had it used the 

CRD or RD method instead of an RCT.  The results are not of interest for assessing the BOND 

program since the program has already been evaluated using an RCT, but may be useful when 

interpreting results regarding other DI program innovations that have not been evaluated using 

RCTs and when making decisions about how those innovations might be evaluated. 

CRD and RD are related and often feasible for retrospective evaluations of DI and related 

programs because some rules governing eligibility and benefits rely on time-based variables such 

as age and benefit duration.  For example, Chen and van der Klaauw (2008) used an age-based 

RD to evaluate the impact of DI on labor supply and Deshpande (2016) used an age-based RD to 

evaluate the effect of removing Supplemental Security Income (SSI) eligibility on earnings and 

 
2 In 2018, SSA made DI payments to 8,537,332 disabled workers, 254,581 disabled widow(er)s, and 1,127,181 

disabled adult children.  
3 Under that law, SSA withheld benefits for months in which beneficiaries engaged in substantial gainful activity.  

Non-blind beneficiaries who earned more than $1,310 in a month and blind beneficiaries who earned more than 

$2,190 in a month were considered to have engaged in substantial gainful activity.   
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income.  Similarly, while not using a time-based variable, Gelber et al. (2015, 2017) used a 

regression kink design, which is very similar to RD, to estimate the effect of DI on mortality and 

earnings. 

We use the duration of DI benefit receipt as the key eligibility criterion (running 

variable).4  Thus, we are simulating what might happen if the BOND program was implemented 

using months of DI receipt as the eligibility criteria and we were to estimate impacts using RD 

and CRD in that scenario.  SSA may choose to use other variables to determine eligibility for 

future program innovations (for example, age, baseline income, health status, etc.).  We chose 

duration of DI benefit receipt in part because it is a variable that is associated with later 

outcomes and takes on a large number of unique values (needed to obtain reasonably precise 

impact estimates).   We chose DI duration over the other possible running variables (age, 

income, and health status) because duration was expected to lead to differential impacts of 

BOND and the BOND sample was stratified according to duration to ensure an oversample of 

short-duration beneficiaries.  Furthermore, the experiences of short-duration beneficiaries are 

indicative of how new DI awardees would experience any new policy that became law (Stapleton 

et al 2010).  

In future research it may be worth exploring alternative running variables.  The 

relationship between the running variable we chose (DI duration) and the outcomes is fairly 

linear, as shown in Appendix C.  If it was even more linear for the other possible running 

variables then we might expect less bias for them.   

We focus on the first few years of DI benefit receipt for several reasons.  First, return to 

substantial employment is most likely within the first five years of DI benefit receipt (Liu and 

Stapleton 2011).  Indeed, BOND was designed to oversample beneficiaries who received DI for 

three years or fewer in part because of the association between short duration of DI benefit 

receipt and positive employment outcomes (Bell et al. 2011).  Second, offering a policy to new 

awardees helps support long-term projections of potential impacts for future beneficiaries, for 

whom the policy would presumably be available upon DI entry.  Finally, as a practical matter, 

beneficiaries who received DI benefits for three years or fewer comprised about 50 percent of the 

 
4 Following the BOND evaluation, we used the disability adjudication date as the start of the duration of DI benefit 

receipt and, when missing, used the date of DI entitlement, with the former rounded to the nearest month.  

Entitlement dates are always the first of a month. 
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BOND evaluation sample, leading to large counts of beneficiaries who had received DI benefits 

for only a few years.  This enables us to detect relatively small amounts of bias. 

This work can be used to help guide future research on income support programs for 

people with disabilities.  More precisely, it can be used to help decide whether or not to do a 

prospective RCT and for interpreting RD and CRD results.  As noted above, SSA has already 

conducted seven large-scale RCT demonstrations to test innovations to the DI program.  The 

results in this paper would not be relevant to any of those innovations since the RCTs were 

already conducted.  However, our results could be used to help inform decisions about whether 

or not an RCT is needed when testing future innovations.  If RD or CRD could be used in place 

of RCTs, then this could save significant evaluation resources, especially for recruiting sites to 

participate in a study.  Even if the program and data collection costs are not affected, getting 

policy-makers to agree to an RCT can be difficult (Stuart et al 2017, McCann 2019, and Tipton 

et al 2021) and thus, possibly more expensive than getting them to agree to continuing or starting 

to use a cut point value to allocate an innovation.  Our results could also help readers interpret 

RD and CRD results, and specifically to help provide readers with an understanding of the 

potential for bias in such studies.    

 

Overview of Within-Study Comparison 

In this paper, we conduct a within-study comparison.  Within-study comparisons are 

designed to estimate bias by comparing results from one type of statistical model to another more 

rigorous one, with the latter normally being an RCT (Wong and Steiner 2018).  An early 

example includes work by Lalonde (1986), while more recent efforts include that of Chaplin et al 

(2018) and Weidmann and Miratrix (2021).  Cook, Shadish and Wong (2008) describe key 

features of within-study comparisons. 

In this study, we estimate bias obtained when estimating impacts using CRD or RD 

compared to what one would obtain when using a closely related RCT.  We produce the CRD 

and RD estimates by first creating a quasi-experimental design from the data generated for the 

RCT.  To do this we first identify a running variable.  We then assign treated observations from 

the RCT that are on one side of a selected cut point value of the running variable as being in the 

synthetic treatment group and assign observations not treated in the RCT that are on the other 

side of the cut point to the synthetic control group.  In this subset of the data we estimate an RD 
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regression.  This is a common approach to investigating RD designs in within-study comparisons 

(WSCs) as in, for example, Gleason et al (2018).  The approach requires a large RCT because the 

data requirements are substantial.   

Our estimates of bias are fairly standard for the CRD models since the CRD and RCT 

models we use are designed to estimate the same estimand (an ATE).  They can be thought of as 

capturing only internal validity bias.  The story is more complicated for RD.  In that case, the RD 

models estimate impacts at the cut point but the RCT models estimate impacts for populations 

that include the cut point but that also include at least some observations away from the cut 

point.5  Since treatment effects can vary away from the cut point, these estimands can differ.  We 

still refer to this as bias because RD estimates are generally used to draw conclusions about 

populations that include observations away from the cut point.  Were this not the case then RD 

estimates would not be relevant for a noticeable fraction of any population.  In other words, the 

bias we are estimating for RD incorporates both internal and external validity bias (Olsen et al 

2018).   

 

Sources of Variation in Bias Estimates and Groups of Bias Estimates 

While our paper is based on the BOND study, our goal is to estimate a distribution of bias 

that might be found in future studies.  To generate this distribution we create 3,600 bias estimates 

that vary by method (RD vs CRD), estimand, cut point, outcome, demographics (age and 

gender), side of the cut point the treatment group is on, whether covariates are used, and how 

many months of data of the running variable are included.  We then break these bias estimates up 

into sets of non-overlapping groups.  Most sets have two groups but some have more.  We then 

test to see how estimated average bias and the estimated variation in bias differs from 0 and how 

the estimated variation in bias differs across the groups of bias estimates within each set.6  Each 

set has groups that differ based on one or two of the characteristics used to create the bias 

estimates (estimand, cut point, outcome, demographics, etc.).  However, the groups in each set 

are perfectly balanced with each other on the other characteristics.  Thus, when we compare—for 

 
5 This is based on the continuity framework for interpreting RD results.  More recently some authors have proposed 

using a local randomization framework which is based on the assumption that observations near the cut point can be 

treated as if they were randomly assigned to treatment status (Cattaneo, Frandsen, and Titiunik 2022). 
6 Since we estimate 3,600 bias estimates one might expect 5 percent to be statistically significant at the 5 percent 

level due to chance.  We avoid this issue by focusing on estimating the mean and variation of bias.   
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example—the group of RD bias estimates with the group of CRD bias estimates there is 

variation across bias estimates within the RD and CRD groups caused by each of the other 

characteristics described above.  However, each RD bias estimate matches to one CRD bias 

estimate on each of those characteristics.  A similar point holds for each of the other sets of non-

overlapping groups.   

We generate variation in bias estimates by estimand by using four bandwidths in the 

CRD and RCT models.  For each bandwidth we estimate impacts for beneficiaries with DI 

durations no more than the bandwidth from the running variable cut point and on the same side 

of the cut point as the synthetic treatment assignment.  The bandwidths include (i) 0.5 years (ii) 

two years, (iii) four years, and (iv) all possible years.  The magnitude of bias might be expected 

to increase as the bandwidth gets larger, especially for the RD model which estimates impacts 

using a 0.5 year bandwidth regardless of the bandwidth being used in the RCT and CRD models.   

We generate variation in bias estimates by cut point by using four cut points chosen to 

target potential DI policies—two, three, four, and five years on DI as of June 1, 2011 (the 

approximate mid-point of notification of assignment to BOND).7  We have no a priori reasons to 

believe that the magnitude of bias will differ across the bias estimates based on this characteristic 

or most of the others considered in this study, but we also have no reason to expect that the levels 

of bias would be similar, so these additional sources of variation can help to estimate the 

potential for variation in bias. 

We estimate bias using five outcomes from 2014, the third full year after BOND random 

assignment.  Our outcomes include earnings, employment, earned BOND yearly amount (the 

programmatic threshold discussed earlier), months with DI benefits, and annual DI benefits due.8  

We have lagged measures for each outcome, corresponding to the same variable measured in 

2010, a few months before BOND random assignment in May 2011.  We standardize each 

outcome and lagged outcome to make the results comparable in magnitude.  We also multiply 

the signs of the months of DI and annual DI benefits variables by negative one so that positive 

 
7 BOND random assignment occurred in May 2011 and treatment subjects were notified of their assignment 

between May and August 2011.  Notification was initially slated to end in July 2011.   
8 Earned BOND yearly amount is set to 1 if annual earnings are above 12 times a monthly DI programmatic 

threshold used to determine initial and ongoing eligibility for DI and 0 otherwise.  In 2014, the threshold was $1,070 

per month for non-blind beneficiaries, which translated to $12,840 annually. 
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bias suggests that the RD or CRD model appears to be biased in favor of the intervention relative 

to the RCT estimate, regardless of the outcome. 

We estimate bias for five populations of individuals that differ based on their 

demographic characteristics.  These include four populations created by splitting the data into 

approximately evenly-sized pieces based on gender and age (above and below median age) and a 

fifth equal to the total population.   

We estimate bias on both sides of the cut points.  More precisely, we estimate impacts 

assuming the treatment group is above the cut point on the running variable, and then, assuming 

the treatment group is below the cut point.  Although we presume that the main policy of interest 

is in delivering services to those with durations below a given cut point, this approach of 

estimating bias on both sides of the cut point has the methodological advantage of doubling the 

sample size of the bias estimates.   

Specification tests have been developed to help identify CRD models that might produce 

biased estimates (Tang et al 2017).  We group the bias estimates based on the results of CRD 

specification tests for discontinuities at the cut point; differences in slopes above and below the 

cut points; and differences in slopes between the outcome and lagged outcome.  We also 

consider various combinations of these tests giving us 5 sets of non-overlapping groups.  In this 

case we would expect more bias when the tests for bias reject the null of no bias. 

We estimate bias with and without covariates.  We include models without covariates in 

part because covariates are not needed for RD and may not be needed for CRD.  In addition, as 

discussed later, we use aggregate data and this limits our ability to estimate models with 

covariates. 

Finally, we estimate our models using two samples of data—one that uses all data for 

beneficiaries with from 4 months to 150 months of DI eligibility at the start of the study, and the 

other going from 15 to 150 months.  We do this because of a large nonlinearity in lagged 

outcomes observed around 15 months (see Appendix E). 

As noted above, we produce a total of 3,600 bias estimates.  Most bias estimate (3,200) 

are without covariates.  This is the product of having 2 methods (CRD or RD), 4 estimands, 4 cut 

points, 5 outcomes, 5 populations, 2 sides of the cut point, and 2 samples (4-150 months and 15-

150 months).  We produce another 400 bias estimates for CRD using covariates, with cut points 

at four or five years, and estimands of four years or all years, while the number of outcomes, 
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populations, sides of the cut point, and samples remains the same.  The results with covariates 

cover fewer bias estimates due to limitations of our aggregate data, as discussed below. 

 

Synthetic Data Generation Method 

As noted above, we use synthetic treatment and control groups to estimate our RD and 

CRD models.  In these models, treatment status is determined based on whether or not a cell has 

a value of the running variable that is above or below a specific cut point.  When an RD or CRD 

model is used outside of a within-study comparison, one only observes treated outcomes on the 

treated side of the cut point and untreated outcomes on the untreated side.  In contrast, when 

synthetic data are used, we observe the treated and untreated outcomes for all values of the 

running variable which enables us to estimate the RD, CRD, and RCT models within a single 

dataset.  Figure 1 illustrates a hypothetical dataset.  The top line represents outcomes for the 

treatment group.  In this scenario, to create an RD or CRD dataset we drop treated observations 

below (to the left of) the cut point as indicated by the fact that the line for the treatment group 

outcome below the cut point is dashed.  We also drop untreated outcomes above the cut point.  

Thus, the second line, which represents outcomes for the control group, is dashed above the cut 

point.  These dashed lines capture potential outcomes in the Rubin causal framework when 

estimating an RD or CRD model (Rubin 1974).  The third line represents lagged outcomes.  It 

combines lagged outcomes for the treatment group above the cut point and the control group 

below, hence that line is solid on both sides.   



10 

Figure 1. Outcome Measures in Typical RD and CRD Designs 

 

 

Data and Samples  

We use data from the evaluation of BOND that is particularly well-suited for this 

analysis.  Random assignment was at the individual level and the sample sizes are large, giving 

us a high level of statistical power.  The data include 77,101 treatment observations and 891,429 

control observations.  In comparison, sample sizes in the Chaplin et al (2018) within-study- 

comparison of RD ranged from around 100 to 20,000 per study.  We use the duration of DI 

benefit receipt (which we also refer to as “DI duration”) at the time of random assignment, 

measured in months, as the running variable for RD and CRD.9  We limit our analyses to BOND 

subjects with 150 months or less of DI duration because of small sample constraints for 

beneficiaries with longer durations.  This covers 75 percent of the sample used in the BOND 

study.10  All BOND subjects were enrolled for a minimum of 4 months, hence, DI duration 

ranges from 4 months to 150 months in some of our analytic samples.  We also observe large 

non-linearities in the relationships between the lagged outcomes and running variable around 15 

 
9 DI duration is defined as months from DI start to June 1, 2011.  See Appendix A for details. 
10 The sample from 4 to 150 months consists of 660,402 control records and 64,426 treatments records.  The sample 

from 15 to 150 months consists of 588,053 control records and 49,842 treatment records.  No records are left out of 

our aggregate data within these ranges.  We did not use data above 150 months. 



11 

months (see Appendix E).  For this reason, we also estimate models using only subjects enrolled 

for at least 15 months and most of our analyses are based on those results.  This covers 66 

percent of the sample used in the BOND study.   

We focus on SSA administrative data that was used in the evaluation of BOND.  BOND 

included two stages and we focus on Stage 1.  The Stage 1 sample is a nationally representative 

random sample of disabled DI beneficiaries ages 18 to 60 residing in any of 10 SSA Area Office 

catchment areas as of May 2011.  The demonstration randomly assigned more than 77,000 

beneficiaries to a Stage 1 treatment group, subject to BOND rules, and nearly 900,000 

beneficiaries to a Stage 1 control group, subject to the rules in place at that time.  More 

information on BOND Stage 1 is available in Hoffman et al. (2017) and information on both 

stages is available in Gubits et al. (2018).   

The administrative data include both the Master Earnings File (MEF), which we use to 

construct employment outcomes, and the Master Beneficiary Record (MBR), which provides 

information on DI benefit outcomes.  We examine outcomes in 2014, the year used as part of a 

cost-benefit calculation of the program and to predict the size of impacts needed to achieve 

benefit neutrality (Gubits et al. 2018).  The MBR also provides beneficiary information that we 

use as potential control variables.  We measure these control variables either at the start of 

BOND (in May 2011) or in 2010 for earnings-related measures, because the MEF includes 

annual, rather than monthly, earnings information.  A final source of SSA administrative data is 

the Supplemental Security Record, which we use for one potential control variable.11   

In order to protect confidentiality and estimate our models efficiently our analyses are 

based on aggregated data.12  We used aggregate data by cell where cells were defined by values 

of the running variable, treatment status, and a random variable that split each of the units 

defined by running variable and treatment status in half.  For breakdowns by gender and age, this 

would be a random subset within the gender/age/running variable/treatment status group.  For 

each cell we used the means of the outcomes and covariates, their standard deviations, the 

sample sizes, and the sums of sample weights used in the BOND evaluation.  The random 

 
11 The database used to administer the Supplemental Security Income program. 
12 The models were estimated at Mathematica.  SSA considers individual-level data and small cells that contain 

fewer than 3 observations as sensitive; such data are only accessible by SSA staff or through other data use 

agreements.  Many of the cells defined by a DI duration of more than 150 months had fewer than 3 observations, 

hence, we excluded those with more than 150 months duration from analysis.  Using aggregate data also enabled us 

to run the models far more quickly than would be the case if we were to have used individual-level data. 
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variable split was used so that we could include more covariates in the models.13  We use those 

aggregate data to estimate our models following methods recommended by Schochet (2020).   

We have confirmed that we can replicate the results of the original BOND study 

reasonably well using our aggregate data.  All differences in impacts between the aggregated 

analysis and the original BOND study are smaller than 0.01 standard deviations and statistically 

insignificant.  Results are shown in Table 1.   

Table 1. Estimated Impacts in 2014 by Outcome and Source 

 

Model Earnings ($) 

Employment 

(%) 

Earned 

BOND 

yearly 

amount (%) 

DI 

benefits ($) 

DI months 

(#) 

BOND study 
16 

(28) 

0.29* 

(0.13) 

0.20** 

(0.07) 

166*** 

(26) 

0.20*** 

(0.02) 

Aggregate data with 

covariates 

51** 

(24) 

0.49*** 

(0.14) 

0.27*** 

(0.07) 

183*** 

(32) 

0.19*** 

(0.02) 

Aggregate data 

without covariates  

53 

(32) 

0.51*** 

(0.20) 

0.27*** 

(0.08) 

179*** 

(65) 

0.19*** 

(0.02) 

Standard deviation 6,180 33 16 6,688 3.89 
 

Notes: First line from Gubits et al (2018a).  Remaining lines based on analyses by authors.  All outcomes are based 

on annual data for 2014 and based on 2010 covariates.  Covariates used with aggregate data are described in 

Appendix B.  */**/*** Impact estimate is significantly different from zero at the .10/.05/.01 levels, respectively, 

using a two-tailed t-test. 

 

Methods  

CRD, RD, and RCT impacts are estimated using methods similar to those of Tang et al 

(2017).  Details are provided in Appendix C.  These methods are based on the idea that one can 

estimate impacts of treatment for the treated group by comparing treated outcomes with 

predicted counterfactual outcomes for the treatment group (the potential outcomes they would 

have had if they were not treated).  For the RCT we predict counterfactual outcomes using data 

on the control group; for RD we use the synthetic comparison group outcomes; and for CRD we 

use the synthetic comparison group outcomes used in RD as well as the lagged outcomes for 

 
13 The number of cells determines the number of degrees of freedom when running our aggregate models with 

covariates.  Since there are few months of data in many of our models, we can only include a few covariates, as 

discussed below.  We did not create more cells because that would have made it difficult to comply with SSA data 

access requirements.   
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both the comparison group and treatment group.  To implement these methods, we regress the 

treated outcomes and the counterfactual estimation outcomes (the outcomes used to predict the 

treatment group counterfactual) on the running variable and other covariates (if any) in separate 

regressions for the treatment outcomes and the counterfactual estimation outcomes, and estimate 

impacts by calculating the differences between the predicted treatment and counterfactual 

outcomes, predicted for the treatment group.  In the CRD and RCT models the treatment group is 

the full target population.  RD models limit the target population to be within the RD bandwidth.  

All outcomes are standardized to facilitate comparisons across outcomes and so that results can 

be interpreted in effect size units. 

The RD models we estimate are not state of the art.  First, we do not control for clustering 

based on the values of the running variable even though this is often done when estimating RD 

models (Lee and Card 2008).  We did not do this for two reasons.  First, doing so would have 

made it difficult to estimate the standard errors of the bias that we report below.  Second, there 

are concerns about the accuracy of this method when the running variable is discrete (measured 

in months in our case) since in at least some cases a single unit on the running variable may be 

larger than the bandwidth needed to obtain reasonably unbiased results (Kolesár and Rothe 

2018).  This does mean that our estimates of bias for RD may be higher than what they would 

have been had we controlled for clustering when estimating the standard errors. 

The second reason our RD models are not state of the art is that we fix the RD bandwidth 

at 0.5 years using a model similar to the one used by Tang et al (2017).  That is, we include only 

observations that are within six months from the cut point used to estimate the relationship 

between the outcome and the running variable.  We estimate this model, rather than a more 

advanced RD model, such as the one proposed by Calonico et al (2020), due to constraints 

related to our use of aggregate data.  More precisely, six months is the smallest bandwidth we 

felt we could use and still have a reasonable number of degrees of freedom when using the 

aggregate data.14  This means that our RD results should not be taken as providing strong 

evidence regarding the bias that would be obtained using RD compared to RCT estimates of the 

same estimands.  However, because RD estimands may be of less policy interest than estimates 

that apply to broader populations this is not necessarily a major limitation.  Finally, because of 

 
14 When using aggregate data the degrees of freedom are based on the number of cells used to aggregate the data 

rather than the original sample size (Schochet 2020). 
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our use of aggregate data, we are unable to include covariates in our RD models.  Recent 

evidence suggests that correctly estimating RD models with covariates can be complicated even 

when one has sufficient data (Calonico et al. 2019). 

We estimate average bias by group (with the groups described above) by taking averages 

of our bias estimates within each group.  While sampling error influences these results it appears 

to have a modest impact perhaps because of the large sample sizes of individuals used for each 

bias estimate and large numbers of bias estimates per group.  Almost all groups have at least 99 

bias estimates.  The only exception is for some of the CRD specification tests.  In those cases, we 

end up with only about 4 bias estimates per group for two groups.  For those results the estimates 

of mean bias could be affected far more by sampling error than for the other groups so we 

recommend caution when interpreting those results.  Almost all of the remaining estimates of 

average bias are below 0.02 standard deviations.   

To estimate the variation in bias within each group of bias estimates we use standard 

meta-analysis methods used by Weidmann and Miratrix (2021) that adjust for sampling error.  

Details are provided in Appendix C.  As shown in that Appendix we are effectively estimating 

the variation in bias, 𝑉(𝐵), using the variation in observed bias estimates, 𝑣(𝑏), minus the 

variation in observed bias estimates due to sampling, 𝑣𝑠(𝑏).  We estimate 𝑣𝑠(𝑏) using the 

average of the squared standard errors of the impact estimates, adjusting for the fact that the 

mean of bias is estimated.  These estimates are all weighted by the inverse of the squared 

standard errors, as is common in meta-analyses.  We label our estimate of 𝑉(𝐵) as 𝑣(𝐵).  Thus, 

(1)  𝑣(𝐵) = 𝑣(𝑏) − 𝑣𝑠(𝑏)  

To make the results more interpretable we calculate the square roots of the predicted 

values from equation 1 and report those in our results in the main body of the report.  Those 

correspond to estimated standard deviations of the bias.   

By comparing bias estimates for the groups described above we address the following 

research questions:  

Does the level of estimated bias or variation in bias differ by: 

• Model (CRD vs. RD, Table 2), 

• Target population (estimand, Table 3), 

• Cut point (Table 4), 

• Outcome (Table 5), 
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• Sub-group (Table 6), 

• Side of cut point (Table 7), 

• CRD specification test outcome (Table 8), 

• Covariate inclusion for CRD models (Table 9), or  

• Data sample (4-150 months vs. 15-150 months, Table 10). 

What are the implications of these results for model selection after one takes into account 

the precision of the estimates? 

 

Findings 

First, we describe average bias and the standard deviation of bias by group (research 

question 1).  We focus on the sample without covariates and with the 15-150 month duration of 

DI.  We then compare results with and without covariates and compare our 15-150 month results 

with those based on the 4-150 month duration of the DI sample.  The tables for each comparison 

include average bias and the standard deviation of bias.  The statistical significance for each 

standard deviation relative to 0 is in the column labeled “Std Dev” and the statistical significance 

levels of differences in standard deviations across groups of bias estimates are in the cells under 

“Statistical significance of Std Dev differences.” We conclude with a section on how bias 

interacts with precision (research question 2). 

Bias Results without Covariates 

We find that both RD and CRD have a fairly small amount of estimated average bias in 

results without covariates, but the estimated standard deviations of bias are somewhat higher 

(Table 2).  These results aggregate across 1,600 bias estimates that vary by estimand, cut point, 

outcome, and side of the cut point.  Collectively, estimated average bias (compared against RCT) 

is below 0.002 in absolute value for both RD and CRD.  The estimated standard deviation of bias 

is below 0.06 for RD and below 0.03 for CRD.  The RD versus CRD difference for the estimated 

standard deviation in bias is statistically significant.  For context, in the original BOND RCT, the 

estimated impacts on earned BOND yearly amount, DI benefits, and months of DI were 0.013, 

0.025, and 0.051 respectively in standard deviation units (Gubits et al. 2018).  Estimated impacts 

on the other two outcomes (earnings and employment) were smaller and not statistically 

significant.  Thus, the estimated standard deviation of bias for RD is larger than the estimated 
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impacts that were statistically significant for 3 outcomes in the original BOND RCT.  For CRD 

that holds true for two outcomes. 

 

Table 2. Bias for RD vs CRD 

 

 Bias vs RCT 

Statistical significance of Std 

Dev differences 

Model Average Std Dev RD CRD 

RD -0.0003 0.058***  *** 

CRD -0.0019** 0.027*** ***  
 

Note: Based on 1,600 bias estimates from BOND data without covariates using the 15-150 month sample (800 bias 

estimates per row).  Outcomes are in standard deviation units.  RD means regression discontinuity.  CRD means 

comparative RD.  Std Dev means standard deviation.  Each bias estimate compares an RD or CRD estimate to a 

randomized control trial (RCT) estimate.  Statistical significance results compare the estimated variation in bias 

between the rows and columns specified.  Statistical significance is reported for all unshaded cells.  The shaded cells 

on the diagonal represent comparing an estimate to itself.  The estimated standard deviation in bias equals the square 

root of the estimated variation in bias after subtracting variation due to sampling.  Standard errors are in Appendix 

D.  */**/*** Estimate is significantly different from zero at the .10/.05/.01 levels, respectively, using a two-tailed t-

test. 

 

When we look at results grouped based on the estimand (0.5 years from the cut point, two 

years, four years, all years) we find that estimated average bias remains below 0.01 in absolute 

value for each estimand (Table 3).  The estimated standard deviation in bias is 0.049 for RD with 

a 0.5 years bandwidth and is smaller, at 0.030, for CRD with a 0.5 years bandwidth.  This 

suggests that CRD actually performs better than the basic RD model when estimating impacts for 

the 0.5 years bandwidth.  As might be expected, RD does somewhat worse as the bandwidth gets 

larger.  In contrast, the estimated standard deviation in bias for CRD actually drops as the 

bandwidth gets larger. 
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Table 3. Bias by Estimand for RD and CRD 

 

    Statistical significance of Std Dev differences 

  Bias vs RCT RD CRD 

Model Estimand Average Std Dev 

0.5 

years 

2 

years 

4 

years 

ALL 

years 

0.5 

years 

2 

years 

4 

years 

ALL 

years 

RD 

0.5 years 0.0027 0.049***  *** *** *** ***    

2 years 0.0012 0.056*** ***  ***   ***   

4 years -0.0028 0.059*** *** ***  ***   ***  

All years -0.0048 0.057*** ***  ***     *** 

CRD 

0.5 years 0.0061*** 0.030*** ***     *** ** *** 

2 years -0.0037*** 0.025***  ***   ***   ** 

4 years -0.0050*** 0.026***   ***  **   *** 

All years -0.0003 0.023***    *** *** ** ***  
 

Note: Based on 1,600 bias estimates from BOND data without covariates using the 15-150 month sample (200 bias 

estimates per row).  Outcomes are in standard deviation units.  RD means regression discontinuity.  CRD means 

comparative RD.  Each bias estimate compares an RD or CRD estimate to a randomized control trial (RCT) 

estimate.  Statistical significance results compare the estimated variation in bias between the rows and columns 

specified.  Statistical significance is reported for all unshaded cells.  The shaded cells on the diagonal of the cells in 

the upper left and lower right are cells that represent comparing an estimate to itself.  The shaded cells in the upper 

right and lower left are shaded because they represent comparisons that are not of substantive interest (for example, 

RD 0.5 to CRD at 2 years).  The estimated standard deviation in bias equals the square root of the estimated 

variation in bias after subtracting variation due to sampling.  Standard errors are provided in Appendix D.  */**/*** 

Estimate is significantly different from zero at the .10/.05/.01 levels, respectively, using a two-tailed t-test. 

 

The fact that we estimate that the RD models are biased even when using bandwidths of 

0.5 years for the RCT might seem surprising since external validity bias is less of an issue there.  

However, RD models can produce biased estimates even in the absence of external validity bias.  

This is because, while RD models do produce consistent estimates of impacts at the cut point, 

they do not produce unbiased estimates of those impacts given finite sample sizes that result in 

bandwidths that can be substantial in size.  This is especially true when the running variable 

takes on a discrete number of values, as is the case here (Kolesár and Rothe 2018).  Thus, even if 

one focuses on internal validity bias, RD models are likely to be biased at least to some degree.  

On theoretical grounds, it is quite possible that the results would differ for a more rigorous RD 

model, for example that of Cattaneo et al (2020), and with a continuous running variable that 

varied by day, rather than the discrete one we used, that varies only by month.  That might be 
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possible in the context of DI since both disability date and adjudication date vary by day and 

those events could affect behaviors (Appendix A). 

We did not expect to see a great deal of variation in results by cut point, but we do see 

some (Table 4).  Again, there is not much bias on average—the largest estimated average bias by 

cut point being less than 0.011 standard deviations in magnitude.  The estimated standard 

deviation in bias is somewhat larger for the larger cut points for RD but is lowest for the third cut 

point for CRD.   

 

Table 4. Bias by Cut Point for RD and CRD 

 

    Statistical significance of Std Dev differences 

  Bias vs RCT RD CRD 

Model 

Cut point 

in years Average Std Dev 2 3 4 5 2 3 4 5 

RD 

2 0.0026 0.050***   ** *** ***    

3 0.0045 0.049***   *** ***  ***   

4 -0.0106 0.064*** ** ***     ***  

5 0.0018 0.065*** *** ***      *** 

CRD 

2 -0.0055*** 0.026*** ***      ***  

3 -0.0057*** 0.025***  ***     ***  

4 0.0002 0.021***   ***  *** ***  *** 

5 0.0017** 0.025***    ***   ***  
 

Notes: Based on 1,600 bias estimates from BOND data without covariates using the 15-150 month sample (200 bias 

estimates per row).  Outcomes are in standard deviation units.  RD means regression discontinuity.  CRD means 

comparative RD.  Each bias estimate compares an RD or CRD estimate to a randomized control trial (RCT) 

estimate.  Statistical significance results compare the estimated variation in bias between the rows and columns 

specified.  Statistical significance is reported for all unshaded cells.  The shaded cells on the diagonal of the cells in 

the upper left and lower right are cells that represent comparing an estimate to itself.  The shaded cells in the upper 

right and lower left are shaded because they represent comparisons that are not of substantive interest (for example, 

RD at two years to CRD at four years).  The estimated standard deviation in bias equals the square root of the 

estimated variation in bias after subtracting variation due to sampling.  Standard errors are provided in Appendix D.   

*/**/*** Estimate is significantly different from zero at the .10/.05/.01 levels, respectively, using a two-tailed t-test. 

 

When we look at results by outcome, the absolute value of the estimated average bias 

gets a bit higher, going as high as 0.022 for the fourth outcome for RD, and remains below 0.01 
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regardless of the outcome for CRD (Table 5).  The estimated standard deviation of bias does not 

vary substantially across outcomes for RD but does vary a bit across outcomes for CRD. 

 

Table 5. Bias by Outcome for RD and CRD 

 

    

Statistical significance of Std Dev 

differences 

  Bias vs RCT RD CRD 

Model Outcome Average Std Dev O1 O2 O3 O4 O5 O1 O2 O3 O4 O5 

RD 

Earnings  (O1) -0.0162*** 0.053***      ***     

Employment (O2) 0.0029 0.051***       ***    

Earned BOND yearly 

amount (O3) 
-0.0177*** 0.055***        ***   

Amount of benefits 

(O4) 
0.0221*** 0.055***         ***  

Months of benefits 

(O5) 
0.0065* 0.053***          *** 

CRD 

Earnings  (O1) 0.0010 0.021*** ***      *** *** *** ** 

Employment (O2) -0.0065*** 0.028***  ***    ***  ***   

Earned BOND yearly 

amount (O3) 
-0.0039*** 0.023***   ***   *** ***  ***  

Amount of benefits 

(O4) 
0.0022** 0.030***    ***  ***  ***  ** 

Months of benefits 

(O5) 
-0.0034*** 0.025***     *** **   **  

 

Notes: Based on 1,600 bias estimates from BOND data without covariates using the 15-150 month sample (160 bias 

estimates per row).  RD means regression discontinuity.  CRD means comparative RD.  Each bias estimate 

compares an RD or CRD estimate to a randomized control trial (RCT) estimate.  Statistical significance results 

compare the estimated variation in bias between the rows and columns specified.  Statistical significance is reported 

for all unshaded cells.  The shaded cells on the diagonal of the cells in the upper left and lower right are cells that 

represent comparing an estimate to itself.  The shaded cells in the upper right and lower left are shaded because they 

represent comparisons that are not of substantive interest (for example, RD employment to CRD benefits).  The 

estimated standard deviation in bias equals the square root of the estimated variation in bias after subtracting 

variation due to sampling.  Standard errors are provided in Appendix D.  */**/*** Estimate is significantly different 

from zero at the .10/.05/.01 levels, respectively, using a two-tailed t-test. 

 

When we look at results by demographic group (overall and by gender and age), we see 

no clear patterns (Table 6).  Absolute estimated average bias remains below 0.02 for RD and 

below 0.01 for CRD.  The point estimates for the estimated standard deviation in bias for RD are 

lower for the full population, at 0.041 than they are for the subgroups, which have estimated 
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standard deviations ranging from 0.051 to 0.083.  As was found for RD, the smallest standard 

deviation for CRD is for the full population estimates.  All of the estimated standard deviations 

for CRD are below 0.04.   

 

Table 6. Bias by Group for RD and CRD 

 

    Statistical significance of Std Dev differences 

  Bias vs RCT RD CRD 

Model Group Average Std Dev 

AL

L G1 G2 G3 G4 

AL

L G1 G2 G3 G4 

RD 

All 0.0020 0.041***  *** ** *** *** ***     

Young females (G1) 0.0152** 0.083*** ***  ***  **  ***    

Older females (G2) -0.0072 0.051*** ** ***  *** *   ***   

Young males (G3) 0.0051 0.074*** ***  ***      ***  

Older males (G4) -0.0109 0.062*** *** ** *       *** 

CRD 

All -0.0026*** 0.020*** ***      *** *** *** ** 

Young females (G1) -0.0006 0.027***  ***    ***   *** ** 

Older females (G2) -0.0021 0.027***   ***   ***   *** *** 

Young males (G3) -0.0011 0.039***    ***  *** *** ***  *** 

Older males (G4) -0.0015 0.022***     *** ** ** *** ***  
 

Notes: Based on 1,600 bias estimates from BOND data without covariates using the 15-150 month sample (160 bias 

estimates per row).  Outcomes are in standard deviation units.  G1 to G4 refer to the 4 subgroups- younger women, 

older women, younger men, and older men.  CRD means comparative RD.  Each bias estimate compares an RD or 

CRD estimate to a randomized control trial (RCT) estimate.  Statistical significance results compare the estimated 

variation in bias between the rows and columns specified.  Statistical significance is reported for all unshaded cells.  

The shaded cells on the diagonal of the cells in the upper left and lower right are cells that represent comparing an 

estimate to itself.  The shaded cells in the upper right and lower left are shaded because they represent comparisons 

that are not of substantive interest (for example, RD G1 to CRD G4).  The estimated standard deviation in bias 

equals the square root of the estimated variation in bias after subtracting variation due to sampling.  Standard errors 

are provided in Appendix D.  */**/*** Estimate is significantly different from zero at the .10/.05/.01 levels, 

respectively, using a two-tailed t-test. 

 

We see no clear differences in estimated average bias by side of the cut point with all 

estimates remaining below 0.01 in magnitude (Table 7).  The estimated standard deviation in 

bias is somewhat lower below the cut point than above for both RD and CRD but the difference 

for RD is not statistically significant.   
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Table 7. Bias by Side of Cut point for RD and CRD 

 

    

Statistical significance of Std Dev 

differences 

  Bias vs RCT RD CRD 

Model 

Side of cut 

point Average Std Dev Below Above Below Above 

RD 
Below -0.0013 0.056***   ***  

Above 0.0017 0.062***    *** 

CRD 
Below -0.0037*** 0.025*** ***   *** 

Above 0.0016 0.029***  *** ***  
 

Notes: Based on 1,600 bias estimates from BOND data without covariates using the 15-150 month sample (400 bias 

estimates per row).  Outcomes are in standard deviation units.  CRD means comparative RD.  Each bias estimate 

compares an RD or CRD estimate to a randomized control trial (RCT) estimate.  Statistical significance results 

compare the estimated variation in bias between the rows and columns specified.  Statistical significance is reported 

for all unshaded cells.  The shaded cells on the diagonal of the cells in the upper left and lower right are cells that 

represent comparing an estimate to itself.  The shaded cells in the upper right and lower left are shaded because they 

represent comparisons that are not of substantive interest (for example, RD below to CRD above).  The estimated 

standard deviation in bias equals the square root of the estimated variation in bias after subtracting variation due to 

sampling.  Standard errors are provided in Appendix D.  */**/*** Estimate is significantly different from zero at the 

.10/.05/.01 levels, respectively, using a two-tailed t-test. 

 

We find no evidence that using specification tests for CRD would reduce bias within the 

set of bias estimates we analyzed.  More precisely, the tests based on slope differences (ST2 and 

ST3) almost never fail, and the test of discontinuities (ST1) that does fail fairly often does not 

predict variation in bias (Table 8).  The discontinuity test (ST1) fails just over 10 percent of the 

time, but failure is not associated with a substantial change in estimated average bias or with a 

statistically significant change in the estimated standard deviation of bias.  The test for whether 

the slopes of the outcome and lagged outcome are the same only fails for a few cases (ST2).  The 

specification test for whether the slopes for the lagged outcome above and below the cut point 

are the same fails in only a handful of cases (ST3).  Finally, the test that combines all three tests 

does not predict average bias or variation in bias (ST5).  One interpretation of these results is that 

the discontinuity test (ST1) is not a useful way to test for bias in CRD models and that the results 

for the non-linearity tests are somewhat ambiguous given that we found so few failures in these 

data.  Our later comparison of results based on the models by numbers of months of DI benefit 

receipt (Table 10) may be more informative for thinking about the potential importance of non-

linearities. 
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Table 8. Bias by Specification Test for CRD 

 

  Bias vs RCT  

Statistical significance 

of Std Dev differences 

Model 

Specification 

test value Average Std Dev Percentage Fail Pass 

ST1 Fail -0.0052** 0.026*** 12.4   

ST1 Pass -0.0015** 0.025*** 87.6   

ST2 Fail 0.0014 0.061** 0.5   

ST2 Pass -0.0019** 0.026*** 99.5   

ST3 Fail -0.0687** 0.000 <0.1   

ST3 Pass -0.0019*** 0.026*** >99.9   

ST4 Fail -0.0015 0.059** 0.5  * 

ST4 Pass -0.0019** 0.027*** 99.5 *  

ST5 Fail -0.0052*** 0.025*** 12.9   

ST5 Pass -0.0015 0.027*** 87.1   
 

Notes: Based on 800 bias estimates from BOND data without covariates using the 15-150 month sample (160 bias 

estimates per row).  Outcomes are in standard deviation units.  ST1 refers to the test for a discontinuity for the 

lagged outcome at the cut point.  ST2 refers to whether the slope of the outcome is the same as the slope for the 

lagged outcome on the untreated side of the cut point.  ST3 refers to whether the slope of the lagged outcome is the 

same on both sides of the cut point.  ST4 combines tests 2 and 3.  ST5 combines tests 1, 2, and 3.  CRD means 

comparative RD.  Each bias estimate compares an RD or CRD estimate to a randomized control trial (RCT) 

estimate.  Statistical significance results compare the estimated variation in bias between the rows and columns 

specified.  Statistical significance is reported for all unshaded cells.  The estimated standard deviation in bias equals 

the square root of the estimated variation in bias after subtracting variation due to sampling.  When the standard 

deviation is reported as 0.000, this indicates that the observed variation in bias estimates is smaller than what would 

be expected due to sampling error.  Standard errors are provided in Appendix D.  Percentage reports the percent of 

the bias estimates that failed or passed the test.  */**/*** Estimate is significantly different from zero at the 

.10/.05/.01 levels, respectively, using a two-tailed t-test. 

 

Bias Results with Covariates 

We tested the importance of covariates for a subset of the CRD models.  We were not 

able to test the validity of covariate adjustment for the RD models due to a lack of cells in our 

aggregated data.  We had two random groupings within each value of the running variable.  This 

gives us 12 observations in each regression used to estimate the RD models (one regression for 

each side of the cut point).  We felt that this was not sufficient to test the efficacy of adding 

covariates to the RD model.   
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The lack of cells in our aggregate data also constrained our ability to estimate CRD 

models with covariates.  We limited our investigation of the benefits of covariates to CRD 

models with at least 68 observations on each side of the cut point and used only 4 covariates, in 

addition to the running variable and the intercept.  This gave us over 11 observations per 

parameter being estimated and 62 degrees of freedom in each of those regressions.  This means 

we only included covariates in CRD models with cut points at four or five years and with 

bandwidths of four years or all years.  Since our data start at 15 months of DI duration, this gives 

us at least 34 months of data below the four-year cut point.  With two cells per month that yields 

68 observations (units of aggregated data).     

We selected four variables to include as covariates for our regressions: 1) person is a 

disabled adult child (DAC) beneficiary, 2) person is a dually entitled DAC beneficiary, 3) person 

is receiving SSI, and 4) person has a legal guardian who was not a representative payee.  These 

four covariates were selected based on the fact that they had the largest absolute t-statistics in 

regressions of the outcomes on the larger set of covariates we considered and the running 

variable.  These all had average absolute t-statistics above 1.9.  The next highest covariate (age 

squared) had an average absolute t-statistic below 1.5.  See Appendix B for details. 

Our results suggest no clear benefit to adding covariates to the model (Table 9).  Indeed, 

the absolute estimated average bias and the estimated standard deviation in bias both increase 

slightly when we add covariates to the model.  This may be due in large part to the relatively 

linear relationships found between the outcomes, lagged outcomes, and running variable for the 

sample used in Table 9.  That is the sample with 15 to 150 months of DI benefits at the time of 

random assignment, as shown in Appendix E.   
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Table 9. Bias by Whether Covariates Are Used for CRD 

 

 Bias vs RCT 

Statistical significance of Std 

Dev differences 

Model Average Std Dev No covariates Covariates 

No covariates 0.0001 0.024***  *** 

Covariates -0.0035*** 0.026*** ***  
 

Notes: Based on 400 bias estimates from BOND data using the 15-150 month sample (200 bias estimates per row).  

Outcomes are in standard deviation units.  RD means regression discontinuity.  CRD means comparative RD.  Each 

bias estimate compares an RD or CRD estimate to a randomized control trial (RCT) estimate.  Statistical 

significance results compare the estimated variation in bias between the rows and columns specified.  Statistical 

significance is reported for all unshaded cells.  The estimated standard deviation in bias equals the square root of the 

estimated variation in bias after subtracting variation due to sampling.  */**/*** Estimate is significantly different 

from zero at the .10/.05/.01 levels, respectively, using a two-tailed t-test. 

Checking for Importance of Non-Linearities Observed at 15 months  

As shown in Appendix E, the relationships between the lagged outcomes, post-tests, and 

running variable are generally linear above 15 months of DI benefit receipt at the start of the 

study, at least when viewed across many months.  Consequently, we implemented a linear 

specification for the running variable and limited our analyses to the data from 15 to 150 months.  

Tang et al (2017) also used a linear specification based on a visual inspection of their data.     

While the relationships of the outcomes and lagged outcomes with the running variable 

are linear above 15 months, the slope from 4 months to 15 months is very different from that 

above 15 months for all of the lagged outcomes.  These non-linearities seems plausible given 

how our variables were defined.  In particular, we would expect a strong positive association 

between months of DI receipt in 2010 (one of our lagged outcomes) and total months of DI 

receipt by July of 2011 (our running variable) since the former is a component of the latter for 

anyone with more than 6 months of DI receipt.  At the same time, once one has more than 18 

months of DI receipt in July of 2011, additional months may not be correlated with months in 

2010 since presumably almost all of those individuals have 12 months in 2010.  Hence, we see a 

drastic change in the slope around that time.  A similar pattern might be expected for DI benefits 

in 2010 since it is highly correlated with months of DI and that is what we find.  Similarly, we 

would expect the opposite for the earnings and employment variables since individuals with 

higher earnings and employment are less likely to be on DI.  Again, this is what we find. 
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In order to avoid complications associated with these non-linearities we prioritized the 

models using data from 15 to 150 months.  However, we estimated an additional set of models 

using data from 4 to 150 months and including interactions between the running variable and a 

dummy variable identifying whether the observation is below the 15 month cut point.  Those 

interactions were designed to allow for the non-linearities we found in the data.  As shown in 

Table 10, the change in sample made very little difference for the RD estimates.  However, for 

CRD the standard deviation in bias rose dramatically, from around 0.027 in the 15-150 month 

sample, to 0.159 for the sample that goes down to 4 months.15  This suggests that our attempts to 

control for the nonlinearities in the sample inclusive of 4 months of DI duration were not 

sufficient to keep the bias at a low level.  This does not mean that it would be impossible to 

obtain reduced bias for CRD in the presence of such non-linearities, but does suggest that it 

might be quite challenging.   

 

Table 10. Bias by Sample for RD and CRD 

 

    

Statistical significance of Std Dev 

differences 

  Bias vs RCT 4-150 months 15-150 months 

Months of 

data in 

sample Model Average Std Dev RD CRD RD CRD 

4-150 
RD -0.0009 0.059***  ***   

CRD -0.1179*** 0.159*** ***   *** 

15-150 
RD -0.0003 0.058***    *** 

CRD -0.0019* 0.027***  *** ***  
 

Notes: Based on 3,200 bias estimates from BOND data (800 bias estimates per row).  Outcomes are in standard 

deviation units.  RD means regression discontinuity.  CRD means comparative RD.  Each bias estimate compares an 

RD or CRD estimate to a randomized control trial (RCT) estimate.  Statistical significance results compare the 

estimated variation in bias between the rows and columns specified.  Statistical significance is reported for all 

unshaded cells.  The estimated standard deviation in bias equals the square root of the estimated variation in bias 

after subtracting variation due to sampling.  Standard errors are provided in Appendix D.  */**/*** Estimate is 

significantly different from zero at the .10/.05/.01 levels, respectively, using a two-tailed t-test. 

 
15 The tests for bias (ST1-ST5) did not do a good job identifying bias in this sample either.  The non-linearity tests 

(ST2 and ST3) performed somewhat better than in the 15-150 sample.  More precisely average bias was much larger 

in the models that failed those tests than in the ones that passed.  However, the standard deviation in bias remained 

large (above 0.15) in both the models that passed and those that failed those tests, as well as in the models that 

passed and failed the discontinuity tests.  Also, the percent passing the non-linearity tests (ST2 and ST3) remained 

very high, above 96 percent, suggesting that they may not be identifying enough non-linearities to work well. 
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To summarize, absolute estimated average bias is generally low while the estimated 

standard deviation in bias is moderate in size when we look at results across the 52 groups of 

bias estimates we analyzed for the 15 to 150 month sample without covariates.  In 50 of those 

groups average absolute estimated average bias is less than 0.02.  In contrast, the estimated 

standard deviation of bias is above 0.02 in 50 groups and is above 0.04 in 23 groups. 

 

Accounting for Precision of Estimates 

When deciding which estimator to use, it is important to consider all potential sources of 

error including average bias, the standard deviation in bias, and the standard errors of the 

estimators.  Since we found very little evidence of average bias we focus on the standard 

deviation in bias and the standard errors.  To summarize these two quantities, we use their sum: 

(2)  𝑣(𝑏)𝑔 = 𝑣(𝐵)𝑔 + 𝑣𝑠(𝑏)𝑔 

This is the sum of the estimated variation in bias and the averaged squared standard 

errors for a set of bias estimates.  To make these numbers more interpretable we take the square 

root and refer to this as the bias-adjusted standard error (BASE). 

(3)  𝐵𝐴𝑆𝐸(𝑏)𝑔 = √𝑣(𝑏)𝑔 

Since the standard errors of RD, CRD, and RCT estimators differ, they can have large 

impacts on the magnitudes of the bias-adjusted standard errors and consequently be an important 

factor when choosing between methods.  We simulated standard errors for RD assuming 

individual-level data, the same probability of treatment as in BOND, and a uniform distribution 

around the cut point using estimates based on Schochet (2009).16  For CRD we assumed that the 

standard errors were similar to what would be found for an RCT.17  When we combined the bias 

estimates with the standard errors, following the 𝐵𝐴𝑆𝐸(𝑏)𝑔 formula and using the BOND 

sample sizes, the bias-adjusted standard errors are about the same as the standard deviations of 

bias because the standard errors, using the full BOND sample, were negligible.  Because RCTs 

have no bias, the bias-adjusted standard errors for RCTs equal their unadjusted standard errors.   

 
16 Schochet shows that under these assumptions one would need 4 times as many observations as would be needed 

for an RCT to achieve the same level of statistical power.  Using our model and data, we get a ratio of 4.4 on 

average, across bias estimates, which suggests that an equivalent bias-adjusted standard error could be obtained with 

an even smaller RCT than what we estimate below. 
17 Using our model and data, the CRD standard errors were about 7 percent larger than the RCT standard errors, on 

average, which again suggests that an equivalent bias-adjusted standard error could be obtained with a smaller RCT 

than what we estimate below. 
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In order to compare the costs of RD and CRD relative to the RCT method we try to 

estimate how large the treatment group sample size for an RCT would need to be to obtain bias-

adjusted standard errors similar to those of an RD or CRD.  We focus on the sizes of the 

treatment groups based on the simplifying assumption that cost is driven only by the size of the 

treatment group which will often be approximately the case when the treatment itself is 

expensive relative to business as usual and the comparison group is getting business as usual.18  

Thus, we focus on varying the size of the treatment group.  We use the standard deviations of 

bias for RD and CRD to backout an equivalent RCT that would achieve the same standard errors 

(and hence same bias-adjusted standard error) using the same sample size for the control group 

as in the BOND study, but reducing the size of the treatment group.  We find that we would need 

a very large RD (n=77,000 treatment observations) to achieve the same bias-adjusted standard 

error as a small RCT (n=300 treatment observations).  This implies that the RD would be far 

more expensive than a comparable RCT.  Similarly, we would need a very large CRD (again 

n=77,000 treatment observations) to achieve the same bias-adjusted standard error as a much 

smaller RCT (n= 1,400 treatment observations).  Thus, the RD and CRD studies need very large 

treatment group sample sizes to achieve bias-adjusted standard errors similar to what could be 

obtained with much smaller, and thus less expensive, RCTs.   

 

Conclusion 

In this study we evaluate the efficacy of regression discontinuity (RD) and comparative 

RD (CRD) relative to a randomized control trial (RCT), using data from the BOND evaluation.  

We find little evidence of bias on average but substantial evidence of variation in bias, even after 

adjusting for sampling variation.  We estimate a standard deviation of bias of 0.027 for the CRD 

estimates.  This implies a minimum detectable effect of about 0.075 standard deviations of the 

outcome, even with a very large sample size, if one uses a bias adjusted standard error (one that 

incorporates the variation due to bias).  This minimum detectable effect is much larger than the 

impact estimates found in the BOND study, some of which were statistically significant and 

 
18 In other words, we are assuming that the treatment group costs the government more money.  That was not the 

expectation with BOND but that is what turned out to be the case. 
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substantively important.  This suggests that policymakers should consider using bias-adjusted 

standard errors when interpreting CRD and RD results.19 

We find that CRD requires a much larger sample size to achieve the same bias-adjusted 

standard error as an RCT.  This implies that in many cases CRD may not be optimal.  That said, 

there are situations where an RCT may not be feasible.  In those situations, CRD may be optimal 

especially if a standard deviation of bias of 0.027 or larger is acceptable. 

For RD we estimate a standard deviation of bias that is even larger than for CRD, at 

0.058, which implies a minimum detectable effect of 0.162 standard deviations of the outcome.  

This estimate of the standard deviation of bias incorporates the fact that RD is only estimating 

treatment effects at the cut point, while policy makers are generally interested in impacts for 

larger populations with impacts that may vary by the values of the running variable.  However, 

even when the RD and RCT use the same bandwidth, the standard deviation in bias is still 

substantial at 0.049 suggesting that RD models similar to the one we estimated may be less 

useful in practice than CRD.  That said, it is not always possible to obtain the data needed for a 

CRD model.  In our case we added a lagged outcome to the standard RD model.  Other variables 

could be used in place of the lagged outcome but if none are available than an RD model may 

still be optimal. 

Our results appear to be reasonably consistent with prior literature.  In particular, 

Weidmann and Miratrix (2021) estimated a standard deviation of bias of 0.04 for models 

estimated using a simple matching algorithm.20  This is fairly similar to our estimate of about 

0.03 for CRD.  Chaplin et al. (2018) estimated a standard deviation of bias for RD models of 

0.07.  In comparison, we estimate about 0.06 for RD.  This also suggests that outside of the 

context of DI, our results may be more encouraging for both CRD and RD models as these levels 

of bias were judged to be more acceptable in the prior literature cited here. 

Our estimates of bias come with several caveats.  Bias might be larger than what we 

estimate because WSCs can only capture some forms of bias.  For example, manipulation of the 

running variable is not possible in a WSC like the one we used.  In addition, researcher bias for 

or against an intervention or towards finding statistically significant impact estimates is far less 

likely in a WSC than in a standard RD or CRD study.  In the opposite direction, bias for RD 

 
19 Similar ideas have been proposed by Ganong and Jager (2018) and by Deke, Finucane, and Thal (2022). 
20 This is based on communication with the authors.  In the paper they reported the mean of absolute bias. 
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models may be lower than what we estimate.  This is because we estimated relatively simplistic 

RD models.  More sophisticated models may yield far less bias. 

While CRD models appear to have promise, attention should be paid to non-linearities 

between the running variable and the outcome or lagged outcome.  In this analysis, we observed 

large changes in the slopes of the lagged outcomes on the running variable around 15 months of 

DI receipt.  There are plausible explanations for these relationships.  However, they could 

generate significant bias in CRD models that use data below 15 months of DI receipt, which is 

what we found when we included those data in our models.  We also found evidence suggesting 

that standard specification tests might do little to alleviate this source of bias. 

It is important to note that these conclusions are based on RD and CRD conducted with a 

discrete running variable and the BOND data; hence, results may not generalize to continuous 

running variables, other types of data, or other periods in time.  Nevertheless, we think they 

provide a valuable first step to developing a better understanding of the trade-offs between RD, 

CRD, and RCTs in situations similar to those considered here. 

More research on variations of the CRD model would enhance our understanding of the 

performance of the approach relative to RCTs.  For example, there are methods similar to CRD 

that match the comparison group on one side of the cut point to the treatment group on the other 

side (Angrist and Rokkanen 2015).  Such matching may improve on the simple regression 

adjustment used here.  In addition, the running variable we used was not continuous: the start of 

DI receipt always occurs on the first day of a given month.  Other measures of duration of DI 

receipt, such as the adjudication date of a DI application, may occur on any day of the month and 

might yield smaller standard errors for the CRD models and less bias. 

It may also be helpful to do more research on the RD model.  RD performed better than 

CRD when there were non-linearities in the relationship between the running variable and the 

lagged outcome.  Hence, it might be helpful to assess the performance of RD models using 

methods proposed by Calonico et al (2020) and using a running variable that varied by day, 

rather than month, in order to obtain more precise estimates.  It might also be worth exploring 

how bias varies with the sample sizes used as that could have important impacts on bias 

especially for RD.
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Appendix A. Running Variable 

In this Appendix, we provide more details on the running variable used in the within 

study comparison: the duration of DI benefit receipt at the time of BOND enrollment.  We use 

the same measure of benefit duration as used in the implementation and evaluation of Stage 1 of 

BOND.  Specifically, this is the number of days from the approximate start of DI benefits to June 

1, 2011, rounded to the nearest month.  The DI start date is based on the award date for 93 

percent of the sample that has an award date on file, and the entitlement date for the remaining 7 

percent of our sample.  We describe the DI award date and entitlement date, as well as other 

milestones on the path to benefit receipt to better understand these dates and related alternatives 

(Table A1).  We distinguish between continuous variables that vary by day and discrete ones, 

that can only take on certain values, usually the first day of each month. 

 

Table A1. Social Security Disability Insurance Dates 

 

Date Continuous? Definition 

Disability onset date Yes 
The first date in which a person meets the medical and 

non-medical criteria for DI.  

Entitlement date No 

Date of initial entitlement to DI benefits; also considered 

to be the enrollment date.  Occurs 5 months after the first 

day of the month following the disability onset date. 

Adjudication date Yes 

Date SSA made an initial adjudication or appeal decision 

on a claim.  SSA notifies beneficiaries of their decision, 

typically through a mailed letter.  This occurs after the 

disability onset date, but could be before or after the 

entitlement date.    

Award date No 

Date a beneficiary is entitled to benefit payments and 

received their first payment.  Payments are typically 

made on the third of the month or the second, third or 

fourth Wednesday of the month.   

The measure of DI duration used in the evaluation of BOND and used as the running 

variable in this analysis is based on discrete variables (award date and entitlement date).  

However, RDs are likely to have less bias and both RDs and CRDs are likely to have smaller 

standard errors when based on continuous variables.  The implication of using a discrete versus a 

continuous variable is that CRD and RD might perform better relative to an RCT.  Alternatives 



35 

to consider are disability onset date, which is a continuous variable in the MBR, or adjudication 

date, which is a continuous variable recorded in SSA’s Data Analysis Support Hub (DASH).  
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Appendix B. Covariates 

The use of aggregate data imposes limits on the number of covariates we can include in 

our models and which models we can run with covariates.  In the end, we limit our analyses of 

covariates to the models with the cut point equal to four or five years and to those with 

bandwidths of four years or all years.  We select four covariates, which allows for 62 degrees of 

freedom, by running regressions of each of the five outcomes on all of the covariates and the 

running variable using the original data by cell (15-150 months, not by age or gender), 

calculating the average t-statistics across the five outcomes, and picking the four covariates with 

the largest average t-statistics. 

We start with the same set of covariates used in the BOND study, except that we omit 

covariates based on the running variable, lagged outcomes, and closely related variables and 

interactions.  Covariates omitted for these reasons include monthly benefit amount (MBA) at 

baseline, Average Indexed Monthly Earnings (AIME) as of May 2011, earnings in 2010 (the 

year prior to BOND random assignment year),  if monthly benefit amount (MBA) at baseline is 

equal to zero, if AIME as of May 2011 are equal to zero, the interaction of monthly benefit 

amount at baseline and AIME as of May 2011, AIME as of May 2011 (squared), and if any 

employment in 2010 (the year prior to random assignment year).   

Some covariates were omitted because they were either too similar to our running 

variable or part of the running variable vector, Rp.  These include 36 months or fewer of DI 

receipt (short duration), if DI start date is on or after January 1, 2010 (very short duration), 

number of years receiving DI, number of years receiving DI squared, interaction of very short-

duration x 2010 earnings, and the interaction of age and number of years receiving DI.   

The covariates considered for inclusion in Xp are age, age squared, the county 2010 

employment rate for people with a disability, the county April 2011 unemployment rate, and 

dummies for SSI receipt, if a disabled adult child (DAC) beneficiary, if a dually entitled DAC 

beneficiary, if a disabled widow(er) beneficiary (DWB), if a dually entitled DWB, if missing 

employment rate for people with a disability, if disabled, if female, if has neoplasms, if has 

mental disorders, if has back or other musculoskeletal issues, if has nervous system disorders, if 

has circulatory system disorders, if has genitourinary system disorders, if has a respiratory 

disorder, if has severe visual impairments if has issues with the digestive system, if has other 

impairments, if has unknown impairments, if has a representative payee, if lives in a rural area, if 
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missing the 2010 unemployment rate/rural status, has auxiliary beneficiary (AUX) who is not a 

DAC or DWB, receives written beneficiary notices in Spanish, ineligible for Stage 2 of the 

BOND study for geographical reasons, and ineligible for Stage 2 for having a legal guardian who 

was not a representative payee.   
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Appendix C. Methods 

Datasets 

In order to describe our methods more completely we first describe a series of datasets 

we use in our estimation.  These include the original data, a target population dataset, a CRD 

dataset, an RD dataset, and an RCT dataset.  We create the target population dataset first from 

the original data, and then use that to create the other datasets.  This is done to ensure that we 

standardize the data in the same way across models within a target population.  The target 

population dataset is usually limited to individuals with between 15 and 150 months of DI 

duration at the start of BOND in most of our analyses, but as discussed earlier, we also estimate 

bias using individuals with as few as 4 months to see how much including those additional 

months of data matters.  In addition, for most of our bias estimates we further limit the target 

population based on gender, age, or other criteria.   

The RD dataset is designed to simulate data we would have in a real RD situation in 

which there was no RCT.  The target population data include both treatment and control 

observations from the original data.  We create the RD dataset by dropping treatment 

observations on the untreated side of the cut point and control observations on the treated side 

from the target population dataset.  Thus, the remaining data has only treated observations on the 

treated side of the cut point and only control observations on the untreated side.  These control 

observations are used as the comparison observations in the RD models. 

The CRD dataset augments the RD dataset in a way that facilitates using lagged 

outcomes in the counterfactual regressions.  We do this by creating an additional record for each 

individual—both treatment and control—in which the dependent variable is the lagged outcome.  

This enables us to run regressions to predict the counterfactual where the counterfactual 

estimation outcomes include both the outcomes for the comparison group (on the untreated side 

of the cut point) as well as lagged outcomes for both the treatment and comparison groups (on 

both sides of the cut point). 

The RCT dataset is similar to the RD dataset but designed to facilitate estimation of 

impacts using RCT methods.  To do this we take the target population dataset and drop all 

observations on the untreated side of the cut  point which leaves us with both treatment and 

control observations on the treated side of the cut point.  Thus, the RCT dataset can be used to 

estimate treatment on the treated effects. 
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Standardizing 

We standardize our outcomes, lagged outcomes, and covariates for two different 

purposes.  The outcomes and lagged outcomes are standardized so that our results are 

comparable across outcomes.  Our covariates are standardized to facilitate estimating treatment 

and counterfactual outcomes for the treatment groups.   

We standardize all outcomes and lagged outcomes using the corresponding means and 

standard deviations for the full BOND study control sample.  Specifically, we subtract the 

corresponding mean and divide by the standard deviation.   

We standardize the covariates and the running variable for CRD by mean-centering them 

based on their means in the treatment sample (on the treated side of the cut point).  This is done 

once for each target population using only the data within the relevant distance from the cut point 

for the model being estimated.  We use the same mean-centering when estimating the 

corresponding RCT model.  We standardize the running variable for RD by mean-centering it 

based on its mean on the treated side of the cut point within the 0.5 year bandwidth.  However, 

when estimating the corresponding RCT model we use a bandwidth appropriate for the target 

population (0.5 years, two years, four years, or all years).  Thus, the RCT is designed to estimate 

impacts for the full target population while the RD always estimates impacts at the cut point so 

the difference between the RD and RCT estimates is in part because they are estimating different 

estimands. 

Comparative Regression Discontinuity Method 

We estimate impacts using the CRD model by subtracting predicted counterfactual 

outcomes from predicted treated outcomes.  To predict the counterfactuals, we regress the 

counterfactual estimation outcomes in the CRD data file (the outcomes for the comparison group 

and the lagged outcomes for both the treatment and comparison groups) on the running variable, 

the control variables (if any), and an indicator for whether the dependent variable is an outcome 

rather than a lagged outcome21:  

(C.1)  Ypr = uCRD + uxCRDXp  + upreLpr + eupr 

where  

 
21 This is similar to equation 1 in Tang et al (2017). 
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• Ypr is the dependent variable r for person p (either an outcome, when r=0, or a 

lagged outcome, when r=1),  

• Xp is the set of covariates for person p (when included in the model) and the 

running variable, RVp, and is mean-centered on the values for the relevant 

treatment group, as discussed earlier, 

• Lpr is an indicator identifying that the record is for a lagged outcome (1) rather 

than for an outcome (0), and 

• eupr is an error term for an untreated record. 

We use this regression to estimate the counterfactual outcome that would be observed for 

each treatment group member had they not been treated.  It is the predicted counterfactual 

outcome for treatment subjects conditional on their values of the running variable and the 

covariates when setting the lagged outcome indicator variable (Ppr) to 0.  Since we mean-center 

the covariates at the values for the treatment group, the intercept, uCRD, is the average of the 

predicted values across treatment group members.22 

We run a similar regression using the outcomes for the CRD treatment group in the CRD 

analysis file23: 

(C.2)  Ypr = tCRD + txCRDXp  + etpr 

where etpr is an error term for a treated outcome record rather than a counterfactual one, 

so r=0.  

Doing this enables us to estimate the impacts for the treatment group as follows: 

(C.3)  CRD = tCRD - uCRD 

Randomized control trial method 

We estimate RCT impacts using equations that are very similar to the ones used to 

estimate the CRD impacts, except that we use the RCT data in which both the treatment and 

comparison groups are on the treated side of the cut point and all dependent variables are 

outcomes, so r=0. 

 
22 To see this, note that the intercept represents the outcome for someone with 0 values for each covariate.  Since the 

covariates are mean-centered for the treatment group that means that the intercept estimates the outcome for 

someone with the mean values of the covariates.  Since we are using a linear regression, the predicted value of the 

mean is the same as the mean of the predicted value.  Thus, the intercept is the mean of the predicted counterfactual 

for the treatment group. 
23 This is similar to equation 2 in Tang et al. (2017). 
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(C.4)  Ypr = uRCT + uxRCTXp  + eupr  

(C.5)  Ypr = tRCT + txRCTXp  + etpr 

Again, this equation allows the impact to vary with the values of the covariates and 

running variable.  Doing this enables us to estimate the average impacts for the treatment group 

as follows: 

(C.6)  RCT = tRCT - uRCT 

Finally, we can estimate bias as: 

(C.7)  bCRD = CRD - RCT 

We run these regressions using the cell-level means weighted by the cell-level sums of 

weights.  When estimating equation C.7 we account for the covariance in estimates between 

equations C.3 and C.6.  Using this method enables us to estimate CRD and RCT impacts, biases, 

and their standard errors.   

Comparative Regression Discontinuity Specification Tests 

We conduct specification tests for the CRD counterfactual models by adding coefficients 

to equation C.1 designed to capture discontinuities in the lagged outcome at the cut point, 

differences in slopes between the outcome and lagged outcome on the untreated side of the cut 

point, and differences in slopes across the cut point for the lagged outcome.   

(C.8)  Ypr = u + u1RVp + u2Xp  + u3Op + u4TRDDp + u5TRDDpRVp + u6OpRVp + epr 

where TRDDp is a dummy variable set to 1 for the treated side of the cut point and 0 

otherwise, and Opr equals 1 minus Lpr.  Thus, it identifies if the record is an outcome and not a 

lagged outcome. 

The parameter u4 identifies any discontinuity in the lagged outcome at the cut point.  The 

parameter u5 identifies any difference in slopes for the lagged outcome above and below the cut 

point and the coefficient u6 identifies any difference in slopes between the outcome and the 

lagged outcome on the untreated side of the running variable.  We use specification tests based 

on each of these alone as well as on various combinations of them.  More precisely we ask: 

1. Is there a discontinuity in the lagged outcome at the cut point? 
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2. Is there a difference between the slopes on the running variable for the untreated 

outcome and lagged outcome? 

3. Is there a difference between the slopes on the running variable for the lagged 

outcome above and below the cut point? 

4. Do either of the slopes differ? 

5. Do any of these tests reject the model? 

Thus, we are able to identify (1) the efficacy of each of these specification tests on their 

own, (2) the marginal benefits of the discontinuity test conditional on the slopes test, and (3) the 

marginal benefits of each slope test conditional on the other.  We categorize tests 1, 2, and 3 as 

having failed if the value is greater than 0.05 standard deviations and is statistically significant at 

the 0.05 value.  Tests 4 and 5 combine results from 1, 2, and 3. 

Regression Discontinuity Design Method 

We estimate the RD models using methods similar to those used for CRD.  As noted 

earlier, this is a simplistic RD model.  Rather than estimating a bandwidth (proximity of the 

observations to the cut point), we selected 0.5 years. 

A major difference between the RD and CRD models is that when we are estimating bias 

associated with using an RD to estimate impacts outside of the 0.5 years bandwidth (the parts of 

the population within two years, four years or all years from the cut point) we still use the 0.5 

years bandwidth to define the estimand for the RD.  This is accomplished by using the RD 

dataset with the covariates mean centered based on their values for the treatment group in the 0.5 

years bandwidth and not based on a larger bandwidth.  To clarify this distinction, we create a set 

of covariates, XRD, that is mean centered by the values of the covariates for the treatment group 

within the 0.5 years bandwidth of the cut point.  This gives us the following equations based only 

on outcome data (r=0). 

(C.9)  Ypr = uRD + uxRDXRDp  + eupr 

(C.10)  Ypr = tRD + txRDXRDp  + etpr 

Using this equation, we can estimate the RD and bias as follows: 

(C.11)  RD = tRD - uRD 

(C.12) bRD =  RD - RCT 
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Methods to Estimate and Analyze Bias 

We use standard meta-analytic methods to estimate equation 1 in the main body of our 

report based on the methods used by Weidmann and Miratrix (2021).   

(1)  𝑣(𝐵) = 𝑣(𝑏) − 𝑣𝑠(𝑏) 

Their paper estimates bias for fourteen treatments with three outcomes per treatment.  

They adjust for correlation due to sampling across bias estimates for different outcomes within 

the same treatment and assume the bias estimates are independent across treatments.  We allow 

all of the bias estimates in our original sample to be correlated due to sampling error.  In order to 

obtain sets of independent bias estimates we based our analyses on 20 sets, s, of replicates, r.  

Each replicate is a dataset equal in size to the original BOND data, and drawn with replacement 

from those data at the individual level, with stratification by treatment status and the values of 

the running variable.  Each set of replicates has 5 replicates, so we have a total of 100 replicates 

across all sets.  We allow for correlation of bias estimates within replicate and assume that the 

bias estimates are independent across replicate.  For a given group, g, of bias estimates and set of 

replicates, s, the formula for 𝑣(𝐵)24 is: 

(C.13)  𝑣(𝐵)gs= [Qgs-(Kg-1)]/Dgs= Qgs/Dgs - (Kg-1)/Dgs  

where 

• Qgs  = (bgjs- Mbgs)2*Wgjs across j, 

• bgjs  = bias estimate j in group g for set s, 

• Wgjs = weight = 1/SE2
gjs, 

• SE2
gjs  = squared standard error for bgjs, 

• Mbgs  = mean of bgjs across j for group g and set s, weighted by Wgjs, 

• Dgs   = denominator = SWgs - (SW2
gs/SWgs), 

• SWgs  = sum of weights = (Wgjs) across j, 

• SW2
gs  = sum of squared weights = (W2

gjs) across j, 

• Kg  = effective sample size of group = kg *w/[1+(kg-1)*ICCg], 

• kg  = average number of bias estimates in group across replicates,25 

 
24 𝑉(𝐵) is often written as t2 in this literature.  In addition, when the sampling error is estimated to be larger than the 

observed variation in bias estimates the estimate of 𝑉(𝐵) is set to 0.  We also report an estimate of 0 for the one 

group where this happens. 
25 For most groups kg does not vary across replicates.  However, for the groups where we test for discontinuities and 

differences in slopes it does. 
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• w  = 5 = number of replicates in each set, 

• ICCg  = max(0, (SE2Mbg – (MSE2
g/(kg*w)))/[MSE2

g]),26  

• SE2Mbg  = V(Mbgs) = variation in Mbgs across sets within the group,27 and 

• MSE2
g  = mean of SE2

gjs for group g, weighted by Wgjs. 

The first component of equation 13, Qgs/Dgs , is the weighted variance of the raw bias 

estimates (not adjusted for sampling error).  The second component, (Kg-1)/Dgs, is an estimate of 

sampling error.  Thus, the difference gives us an estimate of the variation in bias after subtracting 

variation due to sampling. 

We use our results to analyze how much E(B) and 𝑣(𝐵) differ depending on the 

characteristics of the sample used to create the bias estimates, as discussed below.  We select 

characteristics that can be used to divide the sample and corresponding bias estimates into non-

overlapping sets.  To analyze how the level of bias differs with these characteristics, we compare 

the mean bias and variance in bias between each of these non-overlapping groups.   

Our key parameter estimates are the estimates of mean bias and variation in bias for 

different groups of bias estimates, and differences in the estimated variation in bias between 

certain groups of bias estimates.  We use bootstrapping to estimate the standard errors of these 

parameter estimates.  More precisely, we estimate mean bias, the variation in bias, and 

differences in those quantities between the non-overlapping groups using for each of the 20 sets 

of replicates.  The estimated standard error of each parameter estimate of interest is equal to the 

standard deviation of the estimates of that parameter across those bootstrap samples. 

  

 
26 Note that SE2Mbg is not included in the denominator because MSE2

g captures total variation by itself, including 

the variation between replicates.  All estimates of the ICCs were positive except when we had no bias estimates. 
27 We cannot estimate this parameter by set since it is based on variation across sets.  Thus, our final standard errors 

do not account for variation across sets in this parameter or Kg. 
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Appendix D. Variation in Bias Estimates 

In this Appendix we present the standard errors of the key parameter estimates presented 

in the main body of the report.  Those parameter estimates cover mean bias, variation in bias, and 

differences in the variation in bias between subgroups.   

 

Table D1. Bias for RD vs CRD and Standard Errors of Key Parameters 

 

 Bias vs RCT 

Standard errors of Var Bias 

differences 

Model Average Var Bias RD CRD 

RD 
-0.0003 

(0.0033) 

0.0034*** 

(0.0002) 
 0.0002 

CRD 
-0.0019** 

(0.0009) 

0.0007*** 

(0.0000) 
0.0002  

 

Notes: Numbers in parentheses are standard errors.  Based on 1,600 bias estimates from BOND data without 

covariates using the 15-150 month sample (800 bias estimates per row).  Outcomes are in standard deviation units.  

RD means regression discontinuity.  CRD means comparative RD.  Std Dev means standard deviation.  Each bias 

estimate compares an RD or CRD estimate to a randomized control trial (RCT) estimate.  Standard errors of Var 

Bias differences results compare the estimated variation in bias between the rows and columns specified.  The 
shaded cells on the diagonal represent comparing an estimate to itself.  The estimated variation in bias equals the 

variation in estimated bias after subtracting variation due to sampling.  */**/*** Estimate is significantly different 

from zero at the .10/.05/.01 levels, respectively, using a two-tailed t-test. 
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Table D2. Bias by Estimand for RD and CRD and Standard Errors of Key Parameters 

 

    Standard errors of Var Bias differences 

  Bias vs RCT RD CRD 

Model Estimand Average Var Bias 

0.5 

years 

2 

years 

4 

years All 

0.5 

years 

2 

years 

4 

years ALL 

RD 

0.5 years 
0.0027 

(0.0030) 

0.0024*** 

(0.0001) 
 0.0002 0.0002 0.0002 0.0001    

2 years 
0.0012 

(0.0031) 

0.0032*** 

(0.0002) 
0.0002  0.0001 0.0001  0.0002   

4 years 
-0.0028 

(0.0036) 

0.0034*** 

(0.0002) 
0.0002 0.0001  0.0001   0.0002  

All 
-0.0048 

(0.0040) 

0.0032*** 

(0.0002) 
0.0002 0.0001 0.0001     0.0002 

CRD 

0.5 years 
0.0061*** 

(0.0016) 

0.0009*** 

(0.0001) 
0.0001     0.0001 0.0001 0.0001 

2 years 
-0.0037*** 

(0.0010) 

0.0006*** 

(0.0000) 
 0.0002   0.0001  0.0000 0.0000 

4 years 
-0.0050*** 

(0.0010) 

0.0007*** 

(0.0000) 
  0.0002  0.0001 0.0000  0.0000 

All 
-0.0003 

(0.0010) 

0.0005*** 

(0.0000) 
   0.0002 0.0001 0.0000 0.0000  

 

Notes: Numbers in parentheses are standard errors.  Based on 1,600 bias estimates from BOND data without 

covariates using the 15-150 month sample (200 bias estimates per row).  Outcomes are in standard deviation units.  

RD means regression discontinuity.  CRD means comparative RD.  Each bias estimate compares an RD or CRD 

estimate to a randomized control trial (RCT) estimate.  Standard errors of Var Bias differences results compare the 

estimated variation in bias between the rows and columns specified.  The shaded cells on the diagonal of the cells in 

the upper left and lower right are cells that represent comparing an estimate to itself.  The shaded cells in the upper 

right and lower left are shaded because they represent comparisons that are not of substantive interest (for example, 

RD 0.5 years to CRD at two years).  The estimated variation in bias equals the variation in estimated bias minus the 

variation due to sampling.  */**/*** Estimate is significantly different from zero at the .10/.05/.01 levels, 

respectively, using a two-tailed t-test. 
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Table D3. Bias by Cut point for RD and CRD and Standard Errors of Key Parameters 

 

    Standard errors of Var Bias differences 

  Bias vs RCT RD CRD 

Model 

Cut 

point in 

years Average Var Bias 2 3 4 5 2 3 4 5 

RD 

2 
0.0026 

(0.0046) 

0.0025*** 

(0.0003) 
 0.0004 0.0006 0.0006 0.0003    

3 
0.0045 

(0.0047) 

0.0024*** 

(0.0003) 
0.0004  0.0006 0.0006  0.0003   

4 
-0.0106 

(0.0069) 

0.0041*** 

(0.0006) 
0.0006 0.0006  0.0007   0.0006  

5 
0.0018 

(0.0050) 

0.0042*** 

(0.0005) 
0.0006 0.0006 0.0007     0.0005 

CRD 

2 
-0.0055*** 

(0.0007) 

0.0007*** 

(0.0001) 
0.0003     0.0001 0.0000 0.0001 

3 
-0.0057*** 

(0.0009) 

0.0006*** 

(0.0000) 
 0.0003   0.0001  0.0001 0.0001 

4 
0.0002 

(0.0008) 

0.0004*** 

(0.0000) 
  0.0006  0.0000 0.0001  0.0000 

5 
0.0017** 

(0.0008) 

0.0006*** 

(0.0000) 
   0.0005 0.0001 0.0001 0.0000  

 

Notes: Numbers in parentheses are standard errors.  Based on 1,600 bias estimates from BOND data without 

covariates using the 15-150 month sample (200 bias estimates per row).  Outcomes are in standard deviation units.  

RD means regression discontinuity.  CRD means comparative RD.  Each bias estimate compares an RD or CRD 

estimate to a randomized control trial (RCT) estimate.  Standard errors of Var Bias differences results compare the 

estimated variation in bias between the rows and columns specified.  The shaded cells on the diagonal of the cells in 

the upper left and lower right are cells that represent comparing an estimate to itself.  The shaded cells in the upper 

right and lower left are shaded because they represent comparisons that are not of substantive interest (for example, 

RD at 2 years to CRD at 4 years).  The estimated variation in bias equals the variation in estimated bias minus 

variation due to sampling.  */**/*** Estimate is significantly different from zero at the .10/.05/.01 levels, 

respectively, using a two-tailed t-test. 
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Table D4. Bias by Outcome for RD and CRD and Standard Errors of Key Parameters 

    Standard errors of Var Bias differences by outcome 

  Bias vs RCT RD CRD 

Model Outcome Average Var Bias O1 O2 O3 O4 O5 O1 O2 O3 O4 O5 

RD 

Earnings (O1) 
-0.0162*** 

(0.0049) 

0.0028*** 

(0.0004) 
 0.0005 0.0003 0.0006 0.0007 0.0004     

Employment (O2) 
0.0029 

(0.0045) 

0.0026*** 

(0.0003) 
0.0005  0.0004 0.0005 0.0005  0.0003    

Earned BOND yearly 

amount (O3) 

-0.0177*** 

(0.0048) 

0.0030*** 

(0.0003) 
0.0003 0.0004  0.0005 0.0005   0.0003   

Amount of benefits (O4) 
0.0221*** 

(0.0037) 

0.0030*** 

(0.0004) 
0.0006 0.0005 0.0005  0.0005    0.0004  

Months of benefits (O5) 
0.0065* 

(0.0038) 

0.0028*** 

(0.0005) 
0.0007 0.0005 0.0005 0.0005      0.0005 

CRD 

Earnings (O1) 
0.0010 

(0.0013) 

0.0004*** 

(0.0001) 
0.0004      0.0001 0.0000 0.0001 0.0001 

Employment (O2) 
-0.0065*** 

(0.0013) 

0.0008*** 

(0.0001) 
 0.0003    0.0001  0.0001 0.0001 0.0001 

Earned BOND yearly 

amount (O3) 

-0.0039*** 

(0.0014) 

0.0005*** 

(0.0001) 
  0.0003   0.0000 0.0001  0.0001 0.0001 

Amount of benefits (O4) 
0.0022** 

(0.0011) 

0.0009*** 

(0.0001) 
   0.0004  0.0001 0.0001 0.0001  0.0001 

Months of benefits (O5) 
-0.0034*** 

(0.0011) 

0.0006*** 

(0.0001) 
    0.0005 0.0001 0.0001 0.0001 0.0001  

Notes: Numbers in parentheses are standard errors.  Based on 1,600 bias estimates from BOND data without covariates using the 15-150 month sample (160 bias 

estimates per row).  RD means regression discontinuity.  CRD means comparative RD.  Each bias estimate compares an RD or CRD estimate to a randomized control 

trial (RCT) estimate.  Standard errors of Var Bias differences results compare the estimated variation in bias between the rows and columns specified.  The shaded cells 
on the diagonal of the cells in the upper left and lower right are cells that represent comparing an estimate to itself.  The shaded cells in the upper right and lower left are 

shaded because they represent comparisons that are not of substantive interest (for example, RD employment to CRD benefits).  The estimated variation in bias equals the 

variation in estimated bias minus variation due to sampling.  */**/*** Estimate is significantly different from zero at the .10/.05/.01 levels, respectively, using a two-
tailed t-test. 
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Table D5. Bias by Group for RD and CRD and Standard Errors of Key Parameters 

    Standard errors of Var Bias differences 

  Bias vs RCT RD CRD 

Model Group Average Var Bias ALL G1 G2 G3 G4 ALL G1 G2 G3 G4 

RD 

All 
0.0020 

(0.0041) 

0.0017*** 

(0.0002) 
 0.0010 0.0004 0.0007 0.0007 0.0002     

Young females (G1) 
0.0152** 

(0.0067) 

0.0068*** 

(0.0010) 
0.0010  0.0012 0.0014 0.0013  0.0010    

Older females (G2) 
-0.0072 

(0.0050) 

0.0026*** 

(0.0003) 
0.0004 0.0012  0.0008 0.0007   0.0003   

Young males (G3) 
0.0051 

(0.0065) 

0.0055*** 

(0.0007) 
0.0007 0.0014 0.0008  0.0011    0.0008  

Older males (G4) 
-0.0109 

(0.0067) 

0.0039*** 

(0.0007) 
0.0007 0.0013 0.0007 0.0011      0.0007 

CRD 

All 
-0.0026*** 

(0.0007) 

0.0004*** 

(0.0000) 
0.0002      0.0001 0.0001 0.0002 0.0001 

Young females (G1) 
-0.0006 

(0.0017) 

0.0007*** 

(0.0001) 
 0.0010    0.0001  0.0001 0.0002 0.0001 

Older females (G2) 
-0.0021 

(0.0015) 

0.0007*** 

(0.0000) 
  0.0003   0.0001 0.0001  0.0002 0.0001 

Young males (G3) 
-0.0011 

(0.0013) 

0.0015*** 

(0.0002) 
   0.0008  0.0002 0.0002 0.0002  0.0002 

Older males (G4) 
-0.0015 

(0.0009) 

0.0005*** 

(0.0001) 
    0.0007 0.0001 0.0001 0.0001 0.0002  

Notes: Numbers in parentheses are standard errors.  Based on 1,600 bias estimates from BOND data without covariates using the 15-150 month sample (160 bias 

estimates per row).  Outcomes are in standard deviation units.  G1 to G4 refer to the 4 subgroups- younger women, older women, younger men, and older men.  CRD 

means comparative RD.  Each bias estimate compares an RD or CRD estimate to a randomized control trial (RCT) estimate.  Standard errors of Var Bias differences 
results compare the estimated variation in bias between the rows and columns specified.  The shaded cells on the diagonal of the cells in the upper left and lower right are 

cells that represent comparing an estimate to itself.  The shaded cells in the upper right and lower left are shaded because they represent comparisons that are not of 

substantive interest (for example, RD G1 to CRD G4).  The estimated variation in bias equals the variation in estimated bias minus variation due to sampling.  */**/*** 
Estimate is significantly different from zero at the .10/.05/.01 levels, respectively, using a two-tailed t-test.
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Table D6. Bias by Side of Cut Point for RD and CRD and Standard Errors of Key Parameters 

 

    Standard errors of Var Bias differences 

  Bias vs RCT RD CRD 

Model 

Side of 

cut point Average Var Bias Below Above Below Above 

RD 

Below 
-0.0013 

(0.0045) 

0.0031*** 

(0.0004) 
 0.0005 0.0004  

Above 
0.0017 

(0.0043) 

0.0038*** 

(0.0003) 
0.0005   0.0003 

CRD 

Below 
-0.0037*** 

(0.0014) 

0.0006*** 

(0.0000) 
0.0004   0.0000 

Above 
0.0016 

(0.0011) 

0.0008*** 

(0.0001) 
 0.0003 0.0000  

 

Notes: Numbers in parentheses are standard errors.  Based on 1,600 bias estimates from BOND data without 

covariates using the 15-150 month sample (400 bias estimates per row).  Outcomes are in standard deviation units.  

CRD means comparative RD.  Each bias estimate compares an RD or CRD estimate to a randomized control trial 

(RCT) estimate.  Standard errors of Var Bias differences results compare the estimated variation in bias between the 

rows and columns specified.  The shaded cells on the diagonal of the cells in the upper left and lower right are cells 

that represent comparing an estimate to itself.  The shaded cells in the upper right and lower left are shaded because 

they represent comparisons that are not of substantive interest (for example, RD below to CRD above).  The 

estimated variation in bias equals the variation in estimated bias minus variation due to sampling.  */**/*** Estimate 

is significantly different from zero at the .10/.05/.01 levels, respectively, using a two-tailed t-test.  



51 

Table D7. Bias by Specification Test for CRD and Standard Errors of Key Parameters 

 

  Bias vs RCT  

Standard errors of Var 

Bias differences 

Test 

Test 

outcome Average Var Bias Percentage Fail Pass 

ST1 

Fail 
-0.0052** 

(0.0021) 

0.0007*** 

(0.0001) 
12.4  0.0001 

Pass 
-0.0015** 

(0.0006) 

0.0006*** 

(0.0000) 
87.6 0.0001  

ST2 

Fail 
0.0014 

(0.0178) 

0.0037** 

(0.0018) 
0.5  0.0019 

Pass 
-0.0019** 

(0.0008) 

0.0007*** 

(0.0000) 
99.5 0.0019  

ST3 

Fail 
-0.0687** 

(0.0274) 

- 

- 
<0.1  . 

Pass 
-0.0019*** 

(0.0007) 

0.0007*** 

(0.0000) 
>99.9 .  

ST4 

Fail 
-0.0015 

(0.0189) 

0.0035** 

(0.0015) 
0.5  0.0014 

Pass 
-0.0019** 

(0.0009) 

0.0007*** 

(0.0000) 
99.5 0.0014  

ST5 

Fail 
-0.0052*** 

(0.0015) 

0.0006*** 

(0.0001) 
12.9  0.0001 

Pass 
-0.0015 

(0.0009) 

0.0007*** 

(0.0000) 
87.1 0.0001  

 

Notes: Numbers in parentheses are standard errors.  Based on 800 bias estimates from BOND data without 

covariates using the 15-150 month sample (160 bias estimates per row).  Outcomes are in standard deviation units.  

ST1 refers to the test for a discontinuity for the lagged outcome at the cut point.  ST2 refers to whether the slope of 

the outcome is the same as the slope for the lagged outcome on the untreated side of the cut point.  ST3 refers to 

whether the slope of the lagged outcome is the same on both sides of the cut point.  ST4 combines tests 2 and 3.  

ST5 combines tests 1, 2, and 3.  CRD means comparative RD.  Each bias estimate compares an RD or CRD estimate 

to a randomized control trial (RCT) estimate.  Standard errors of Var Bias differences results compare the estimated 

variation in bias between the rows and columns specified.  The estimated variation in bias equals the variation in 

estimated bias minus variation due to sampling.  A “-“ indicates that the estimated standard deviation of bias is 0.   

*/**/*** Estimate is significantly different from zero at the .10/.05/.01 levels, respectively, using a two-tailed t-test.  
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Table D8. Bias by Whether Covariates Are Used for CRD and Standard Errors of Key 

Parameters 

 

 Bias vs RCT 

Standard errors of Var Bias 

differences 

Model Average Var Bias No covariates Covariates 

No covariates 
0.0001 

(0.0007) 

0.0006*** 

(0.0000) 
 0.0000 

Covariates 
-0.0035*** 

(0.0010) 

0.0007*** 

(0.0000) 
0.0000  

 

Notes: Numbers in parentheses are standard errors.  Based on 400 bias estimates from BOND data using the 15-150 

month sample (200 bias estimates per row).  Outcomes are in standard deviation units.  RD means regression 

discontinuity.  CRD means comparative RD.  Each bias estimate compares an RD or CRD estimate to a randomized 

control trial (RCT) estimate.  Standard errors of Var Bias differences results compare the estimated variation in bias 

between the rows and columns specified.  The estimated variation in bias equals the variation in estimated bias 

minus variation due to sampling.  */**/*** Estimate is significantly different from zero at the .10/.05/.01 levels, 

respectively, using a two-tailed t-test. 

 

 

Table D9. Bias by Sample for RD and CRD and Standard Errors of Key Parameters 

 

    Standard errors of Var Bias differences 

  Bias vs RCT 4-150 months 15-150 months 

Months 

included in 

sample Estimand Average Var Bias RD CRD RD CRD 

4-150 

RD 
-0.0009 

(0.0032) 

0.0035*** 

(0.0002) 
 0.0005 0.0000  

CRD 
-0.1179*** 

(0.0026) 

0.0253*** 

(0.0004) 
0.0005   0.0005 

15-150 

RD 
-0.0003 

(0.0032) 

0.0034*** 

(0.0002) 
0.0000   0.0002 

CRD 
-0.0019* 

(0.0011) 

0.0007*** 

(0.0000) 
 0.0005 0.0002  

 

Notes: Numbers in parentheses are standard errors.  Based on 3,200 bias estimates from BOND data (800 bias 

estimates per row).  Outcomes are in standard deviation units.  RD means regression discontinuity.  CRD means 

comparative RD.  Each bias estimate compares an RD or CRD estimate to a randomized control trial (RCT) 

estimate.  Standard errors of Var Bias differences results compare the estimated variation in bias between the rows 

and columns specified.  The estimated variation in bias equals the variation in estimated bias minus variation due to 

sampling.  The 4-150 sample covers people with values of 4 to 150 months on the running variable (DI eligibility 

receipt).  */**/*** Estimate is significantly different from zero at the .10/.05/.01 levels, respectively, using a two-

tailed t-test. 
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Appendix E. Graphs of Data 

In this Appendix we present figures showing the relationships between the running 

variable, the outcomes, and the lagged outcomes.  The figures show the outcomes and lagged 

outcomes in separate graphs, by the values of the running variable and treatment status with 

running averages superimposed over the raw data.  These figures help to illustrate how the 

relationships between the outcomes and running variable are generally fairly linear, the sharp 

discontinuity in the lagged outcomes around 15 months, and the amount of noise found in the 

aggregate data, which is more pronounced for the treatment group than the control group.  This 

makes sense because the treatment group is much smaller.  An explanation for the sharp 

discontinuity around 15 months is given in the main body of the report.
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Figure E1. Earnings by Values of the Running Variable 

 

 
Notes: Outcomes are for 2014.  Lagged outcome is for 2010.  Running variable is lifetime months of DI as of June 2011. 

Source: BOND data. 
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Figure E2. Employment by Values of the Running Variable 

 

 
Notes: Outcomes are for 2014.  Lagged outcome is for 2010.  Running variable is lifetime months of DI as of June 2011.   

Source: BOND data. 
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Figure E3. Earned BOND Yearly Amount by Values of the Running Variable 

 

 
Notes: Outcomes are for 2014.  Lagged outcome is for 2010.  Running variable is lifetime months of DI as of June 2011.   

Source: BOND data. 
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Figure E4. DI Months by Values of the Running Variable 

 

 
Notes: Outcomes are for 2014.  Lagged outcome is for 2010.  Running variable is lifetime months of DI as of June 2011. 

Source: BOND data. 
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Figure E5. DI Benefits by Values of the Running Variable 

 

 
Notes: Outcomes are for 2014.  Lagged outcome is for 2010.  Running variable is lifetime months of DI as of June 2011.   

Source: BOND data.   

 

 

 



59 

RECENT WORKING PAPERS FROM THE 

CENTER FOR RETIREMENT RESEARCH AT BOSTON COLLEGE 
 

Work Overpayments Among New Social Security Disability Insurance Beneficiaries 

Denise Hoffman, Monica Farid, Serge Lukashanets, Michael T. Anderson, and John T. Jones, 

July 2022  

 

What Is the Relationship Between Deprivation and Child SSI Participation? 

Michael Levere, David Wittenburg, and Jeffrey Hemmeter, May 2022 

 

What Share of Noncovered Public Employees Will Earn Benefits that Fall Short of Social 

Security? 

Jean-Pierre Aubry, Siyan Liu, Alicia H. Munnell, Laura D. Quinby, and Glenn Springstead, 

April 2022 

 

Employer Concentration and Labor Force Participation 

Anqi Chen, Laura D. Quinby, and Gal Wettstein, March 2022 

 

Will the Jobs of the Future Support an Older Workforce? 

Robert L. Siliciano and Gal Wettstein, March 2022 

 

Employment Outcomes for Social Security Disability Insurance Applicants Who Use 

Opioids 

April Yanyuan Wu, Denise Hoffman, Paul O’Leary, and Dara Lee Luca, February 2022 

 

Would 401(k) Participants Use a Social Security “Bridge” Option? 

Alicia H. Munnell and Gal Wettstein, December 2021 

 

The Alignment Between Self-Reported and Administrative Measures of Application to and 

Receipt of Federal Disability Benefits in the Health and Retirement Study 

Jody Schimmel Hyde and Amal Harrati, December 2021 

 

Changes in New Disability Awards: Understanding Trends and Looking Ahead 

Lindsay Jacobs, December 2021 

 

The Influence of Early-Life Economic Shocks on Aging Outcomes: Evidence from the U.S. 

Great Depression 

Valentina Duque and Lauren L. Schmitz, December 2021 

 

Are There “Hot Spots” of Primary Impairments among New SSDI Awardees – and Do We 

Know Why? 

Jody Schimmel Hyde, Anna Hill, Jonathan Schwabish, and Aaron R. Williams, December 2021 

 

 

All working papers are available on the Center for Retirement Research website 

(https://crr.bc.edu) and can be requested by e-mail (crr@bc.edu) or phone (617-552-1762). 


	Introduction
	Overview of Within-Study Comparison
	Sources of Variation in Bias Estimates and Groups of Bias Estimates
	Synthetic Data Generation Method
	Data and Samples
	Methods
	Findings
	Conclusion
	References
	Appendix A. Running Variable
	Appendix B. Covariates
	Appendix C. Methods
	Appendix D. Variation in Bias Estimates
	Appendix E. Graphs of Data

